A roadmap for getting started with R
[This article was first published on R programming – Oscar Baruffa, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Some folks at work expressed an interest in how to get started learning R. There are lots of resources out there, but I thought I’d share with you what I shared with them as a pathway that I followed that’s working out well for me.
You don’t need all these steps but I suggested starting from 1 and working your way through them that way.
- Read R for Data Science (https://r4ds.had.co.nz/). I only made it to Chapter 16 and could already do a lot of the stuff I wanted to do. This book takes a really nice approach of FIRST getting you some results and then working through some programming-specific stuff, so you won’t just be working through a lot of programming concepts without knowing what you are working towards.
- There are exercises (which I largely skipped), but if you do them and want to check your answers, you can read the companion book here: https://jrnold.github.io/r4ds-exercise-solutions/
- If you get stuck, there is a super helpful Slack channel where you can post questions according to the chapter you are on and people will help you.
- Once you get the hang of manipulating data, I encourage you to practice with some datasets from the Tidy Tuesday challenge. This is a weekly challenge where people create visualisations of the same dataset. It is GREAT for learning how others do things because they often share their code and you can learn a lot. You don’t have to wait for a new dataset, go ahead and look for old datasets that interest you!
- You can view past TidyTuesday submissions and their code here: https://nsgrantham.shinyapps.io/tidytuesdayrocks/
- If you want to participate in posting your own visualisations, you’ll need to join Twitter. Here’s a free guide on how to get started on Twitter for R programmers: https://www.t4rstats.com/
- If you like podcasts, there is also a TidyTuesday podcast with short episodes that cover the previous week’s submissions and helpful tips.
I hope that helps you on your journey. Exciting times ahead :).
The post A roadmap for getting started with R appeared first on Oscar Baruffa.
To leave a comment for the author, please follow the link and comment on their blog: R programming – Oscar Baruffa.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.