COVID-19 decease animation map
[This article was first published on r.iresmi.net, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
# Animation carto décès COVID 19 France # avec lissage # sources ----------------------------------------------------------------- # https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/ fichier_covid <- "donnees/covid.csv" url_donnees_covid <- "https://www.data.gouv.fr/fr/datasets/r/63352e38-d353-4b54-bfd1-f1b3ee1cabd7" # https://www.insee.fr/fr/statistiques/2012713#tableau-TCRD_004_tab1_departements fichier_pop <- "donnees/pop.xls" url_donnees_pop <- "https://www.insee.fr/fr/statistiques/fichier/2012713/TCRD_004.xls" # Adminexpress : à télécharger manuellement # https://geoservices.ign.fr/documentation/diffusion/telechargement-donnees-libres.html#admin-express #aex <- "donnees/1_DONNEES_LIVRAISON_2019-03-14/" aex <- path_expand("~/Downloads/ADMIN-EXPRESS_2-2__SHP__FRA_2020-02-24/ADMIN-EXPRESS/1_DONNEES_LIVRAISON_2020-02-24") # config ------------------------------------------------------------------ library(tidyverse) library(httr) library(fs) library(sf) library(readxl) library(janitor) library(glue) library(tmap) library(grid) library(classInt) library(magick) # + btb, raster, fasterize, plyr rayon <- 100000 # distance de lissage (m) pixel <- 10000 # résolution grille (m) force_download <- FALSE # retélécharger même si le fichier existe et a été téléchargé aujourd'hui ? #' Kernel weighted smoothing with arbitrary bounding area #' #' @param df sf object (points) #' @param field weight field in the df #' @param bandwidth kernel bandwidth (map units) #' @param resolution output grid resolution (map units) #' @param zone sf study zone (polygon) #' @param out_crs EPSG (should be an equal-area projection) #' #' @return a raster object #' @import btb, raster, fasterize, dplyr, plyr, sf lissage <- function(df, field, bandwidth, resolution, zone, out_crs = 3035) { if (st_crs(zone)$epsg != out_crs) { message("reprojecting data...") zone <- st_transform(zone, out_crs) } if (st_crs(df)$epsg != out_crs) { message("reprojecting study zone...") df <- st_transform(df, out_crs) } zone_bbox <- st_bbox(zone) # grid generation message("generating reference grid...") zone_xy <- zone %>% dplyr::select(geometry) %>% st_make_grid( cellsize = resolution, offset = c( plyr::round_any(zone_bbox[1] - bandwidth, resolution, f = floor), plyr::round_any(zone_bbox[2] - bandwidth, resolution, f = floor) ), what = "centers" ) %>% st_sf() %>% st_join(zone, join = st_intersects, left = FALSE) %>% st_coordinates() %>% as_tibble() %>% dplyr::select(x = X, y = Y) # kernel message("computing kernel...") kernel <- df %>% cbind(., st_coordinates(.)) %>% st_set_geometry(NULL) %>% dplyr::select(x = X, y = Y, field) %>% btb::kernelSmoothing( dfObservations = ., sEPSG = out_crs, iCellSize = resolution, iBandwidth = bandwidth, vQuantiles = NULL, dfCentroids = zone_xy ) # rasterization message("\nrasterizing...") raster::raster( xmn = plyr::round_any(zone_bbox[1] - bandwidth, resolution, f = floor), ymn = plyr::round_any(zone_bbox[2] - bandwidth, resolution, f = floor), xmx = plyr::round_any(zone_bbox[3] + bandwidth, resolution, f = ceiling), ymx = plyr::round_any(zone_bbox[4] + bandwidth, resolution, f = ceiling), resolution = resolution ) %>% fasterize::fasterize(kernel, ., field = field) } # téléchargement-------------------------------------------------------------- if (!dir_exists("donnees")) dir_create("donnees") if (!dir_exists("resultats")) dir_create("resultats") if (!dir_exists("resultats/animation")) dir_create("resultats/animation") if (!file_exists(fichier_covid) | file_info(fichier_covid)$modification_time < Sys.Date() | force_download) { GET(url_donnees_covid, progress(), write_disk(fichier_covid, overwrite = TRUE)) } if (!file_exists(fichier_pop)) { GET(url_donnees_pop, progress(), write_disk(fichier_pop)) } # données ----------------------------------------------------------------- covid <- read_csv2(fichier_covid) # adminexpress prétéléchargé dep <- read_sf(path(aex, "ADE_2-2_SHP_LAMB93_FR/DEPARTEMENT.shp")) %>% clean_names() %>% st_set_crs(2154) pop <- read_xls(fichier_pop, skip = 2) %>% clean_names() # prétraitement ----------------------------------------------------------- # contour métropole pour grille de référence fichier_fr <- "donnees/fr.rds" if (!file_exists(fichier_fr)) { fr <- dep %>% st_union() %>% st_sf() %>% write_rds(fichier_fr) } else { fr <- read_rds(fichier_fr) } # jointures des données creer_df <- function(territoire, date = NULL) { territoire %>% left_join(pop, by = c("insee_dep" = "x1")) %>% left_join( covid %>% filter(jour == if_else(is.null(date), max(jour), date), sexe == 0) %>% group_by(dep) %>% summarise(deces = sum(dc, na.rm = TRUE), reanim = sum(rea, na.rm = TRUE), hospit = sum(hosp, na.rm = TRUE)), by = c("insee_dep" = "dep")) %>% st_point_on_surface() } covid_geo_pop <- creer_df(dep) # lissage ----------------------------------------------------------------- # génération de la dernière grille mortalité # et création des grilles pour 100000 habitants # décès métropole d <- covid_geo_pop %>% lissage("deces", rayon, pixel, fr) # population métropole et DOM p <- covid_geo_pop %>% lissage("x2020_p", rayon, pixel, fr) # grilles pour 100000 hab d100k <- d * 100000 / p # classification à réutiliser pour les autres cartes set.seed(1234) classes <- classIntervals(raster::values(d100k), n = 5, style = "kmeans", dataPrecision = 0)$brks # animation --------------------------------------------------------------- image_animation <- function(date) { m <- creer_df(dep, date) %>% lissage("deces", rayon, pixel, fr) %>% magrittr::divide_by(p) %>% magrittr::multiply_by(100000) %>% tm_shape() + tm_raster(title = glue("décès à l'hôpital pour 100 000 hab."), style = "fixed", breaks = classes, palette = "viridis", legend.format = list(text.separator = "à moins de", digits = 0), legend.reverse = TRUE) + tm_shape(dep) + tm_borders() + tm_layout(title = glue("COVID-19 - France - cumul au {date}"), legend.position = c("left", "bottom"), frame = FALSE) + tm_credits(glue("http://r.iresmi.net/ lissage noyau bisquare {rayon / 1000} km sur grille {pixel / 1000} km classif. kmeans projections LAEA Europe données départementales Santé publique France, INSEE RP 2020, IGN Adminexpress 2020"), size = .5, position = c(.5, .025)) tmap_save(m, glue("resultats/animation/covid_fr_{date}.png"), width = 800, height = 800, scale = .4,) } unique(covid$jour) %>% walk(image_animation) animation <- glue("resultats/deces_covid19_fr_{max(covid$jour)}.gif") dir_ls("resultats/animation") %>% map(image_read) %>% image_join() %>% #image_scale("500x500") %>% image_morph(frames = 10) %>% image_animate(fps = 10, optimize = TRUE) %>% image_write(animation)
To leave a comment for the author, please follow the link and comment on their blog: r.iresmi.net.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.