matricks 0.8.2 available on CRAN
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
matricks
package in 0.8.2 version has been released on CRAN! In
this post I will present you, what are advantages of using matricks
and how you can use it.
Creating matrices
The main function the package started with is m
. It’s a smart shortcut
for creating matrices, especially usefull if you want to define a matrix
by enumerating all the elements row-by-row. Typically, if you want to
create a matrix in R, you can do it using base
function called
matrix
.
matrix(c(3 ,4, 7, 5, 8, 0, 9, 2, 1), nrow = 3, byrow = TRUE) ## [,1] [,2] [,3] ## [1,] 3 4 7 ## [2,] 5 8 0 ## [3,] 9 2 1
Although it’s a very simple opeartion, the funtion call doesn’t look
tidy. Alternaively, we can use tibble
with its frame_matrix
function, defining column names with formulae first.
library(tibble) frame_matrix(~ c1, ~ c2, ~ c3, 3, 4, 7, 5, 8, 0, 9, 2, 1) ## c1 c2 c3 ## [1,] 3 4 7 ## [2,] 5 8 0 ## [3,] 9 2 1
However, it’s still not a such powerfull tool as matricks::m
function
is. Let’s see an example.
library(matricks) m(3 ,4, 7| 5, 8, 0| 9, 2, 1) ## [,1] [,2] [,3] ## [1,] 3 4 7 ## [2,] 5 8 0 ## [3,] 9 2 1
As simple as that! We join following rows using |
operator. m
function is very flexible and offers you much more than before mentioned
ones.
m(1:3 | 4, 6, 7 | 2, 1, 4) ## [,1] [,2] [,3] ## [1,] 1 2 3 ## [2,] 4 6 7 ## [3,] 2 1 4
And here and example with bindig multiple matrices together:
mat1 <- diag(1, 3, 3) mat2 <- antidiag(1, 3, 3) * 3 m(mat1, mat2| mat2, mat1) ## [,1] [,2] [,3] [,4] [,5] [,6] ## [1,] 1 0 0 0 0 3 ## [2,] 0 1 0 0 3 0 ## [3,] 0 0 1 3 0 0 ## [4,] 0 0 3 1 0 0 ## [5,] 0 3 0 0 1 0 ## [6,] 3 0 0 0 0 1
By the way, antidiag
function can be found in the matricks
package
too.
Setting & accessing values
These code
mat <- matrix(0, 3, 3) mat[1, 2] <- 0.3 mat[2, 3] <- 7 mat[3, 1] <- 13 mat[2, 2] <- 0.5 mat ## [,1] [,2] [,3] ## [1,] 0 0.3 0 ## [2,] 0 0.5 7 ## [3,] 13 0.0 0
can be replaced with:
mat <- matrix(0, 3, 3) mat <- set_values(mat, c(1, 2) ~ 0.3, c(2, 3) ~ 7, c(3, 1) ~ 13, c(2, 2) ~ 0.5) mat ## [,1] [,2] [,3] ## [1,] 0 0.3 0 ## [2,] 0 0.5 7 ## [3,] 13 0.0 0
In some cases, traditional way we access a matrix element in R
may be
inconvenient. Consider situation shown below:
sample.matrix <- matrix(1, 3, 3) matrix.indices <- list(c(1, 1), c(1, 2), c(1, 3), c(2, 2), c(3, 1), c(3, 3)) for (idx in matrix.indices) { sample.matrix[idx[1], idx[2]] <- sample.matrix[idx[1], idx[2]] + 2 } sample.matrix ## [,1] [,2] [,3] ## [1,] 3 3 3 ## [2,] 1 3 1 ## [3,] 3 1 3
It can be expressed conciser using matrix at
function.
sample.matrix <- matrix(1, 3, 3) matrix.indices <- list(c(1, 1), c(1, 2), c(1, 3), c(2, 2), c(3, 1), c(3, 3)) for (idx in matrix.indices) { at(sample.matrix, idx) <- at(sample.matrix, idx) + 2 } sample.matrix ## [,1] [,2] [,3] ## [1,] 3 3 3 ## [2,] 1 3 1 ## [3,] 3 1 3
Plotting matrix
matrix
objects haven’t had good automatized plotting function until
now. Let’s create and plot a sample matrix of random values.
rmat <- runifm(3, 3) print(rmat) ## [,1] [,2] [,3] ## [1,] 0.3248890 0.1024049 0.3295454 ## [2,] 0.8077164 0.7267801 0.1116789 ## [3,] 0.4406909 0.4703106 0.7047498 plot(rmat)
And here the same using a matrix of random boolean values (rboolm
).
set.seed(7) rmat <- rboolm(3, 3) print(rmat) ## [,1] [,2] [,3] ## [1,] FALSE TRUE TRUE ## [2,] TRUE TRUE FALSE ## [3,] TRUE FALSE TRUE plot(rmat)
Operators
matricks
contains a family of operators, which allows you to perform
column-/row-wise operation
(addition/subtraction/multiplication/division) between matrix and
vector.
mat <- m(1, 2, 3| 4, 5, 6| 7, 8, 9) mat ## [,1] [,2] [,3] ## [1,] 1 2 3 ## [2,] 4 5 6 ## [3,] 7 8 9 vec <- v(1:3) vec ## [,1] ## [1,] 1 ## [2,] 2 ## [3,] 3
If we try to do a column-wise multiplication, we ecounter a problem.
mat * vec ## Error in mat * vec: niezgodne tablice
We can bypass this error using %m%
function. It does what we want!
mat %m% vec ## [,1] [,2] [,3] ## [1,] 1 2 3 ## [2,] 8 10 12 ## [3,] 21 24 27
There are also several other operators available.
mat %d% vec ## [,1] [,2] [,3] ## [1,] 1.000000 2.000000 3 ## [2,] 2.000000 2.500000 3 ## [3,] 2.333333 2.666667 3 mat %+% vec ## [,1] [,2] [,3] ## [1,] 2 3 4 ## [2,] 6 7 8 ## [3,] 10 11 12 mat %-% vec ## [,1] [,2] [,3] ## [1,] 0 1 2 ## [2,] 2 3 4 ## [3,] 4 5 6
I encourage you to familiarize with matricks
. Visit matrix
documentation site and learn more!
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.