Drawing a stereographic duoprism
[This article was first published on Saturn Elephant, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In this post, I’ll show how to draw a stereographic duoprism using R, Asymptote and POV-Ray.
With R
library(rgl) A <- 8L # number of sides of the first polygon B <- 4L # number of sides of the second polygon # construction of the vertices vertices <- array(NA_real_, dim = c(A,B,4L)) for(i in 1L:A){ v1 <- c(cos(i/A*2*pi), sin(i/A*2*pi)) for(j in 1L:B){ v2 <- c(cos(j/B*2*pi), sin(j/B*2*pi)) vertices[i,j,] <- c(v1,v2) } } # construction of the edges edges <- array(NA_integer_, dim = c(2L,2L,2L*A*B)) dominates <- function(c1, c2){ c2[1L]>c1[1L] || (c2[1L]==c1[1L] && c2[2L]>c1[2L]) } counter <- 1L for(i in seq_len(A)-1L){ for(j in seq_len(B)-1L){ c1 <- c(i,j) candidate <- c(i, (j-1L)%%B) if(dominates(c1, candidate)){ edges[,,counter] <- cbind(c1, candidate) + 1L counter <- counter + 1L } candidate <- c(i, (j+1L)%%B) if(dominates(c1, candidate)){ edges[,,counter] <- cbind(c1, candidate) + 1L counter <- counter + 1L } candidate <- c((i-1L)%%A, j) if(dominates(c1, candidate)){ edges[,,counter] <- cbind(c1, candidate) + 1L counter <- counter + 1L } candidate <- c((i+1L)%%A, j) if(dominates(c1, candidate)){ edges[,,counter] <- cbind(c1, candidate) + 1L counter <- counter + 1L } } } # stereographic projection stereog <- function(v){ v[1L:3L] / (sqrt(2) - v[4L]) } # spherical segment sphericalSegment <- function(P, Q, n){ out <- matrix(NA_real_, nrow = n+1L, ncol = 4L) for(i in 0L:n){ pt <- P + (i/n)*(Q-P) out[i+1L, ] <- sqrt(2/c(crossprod(pt))) * pt } out } # stereographic edge stereoEdge <- function(verts, v1, v2){ P <- verts[v1[1L], v1[2L], ] Q <- verts[v2[1L], v2[2L], ] PQ <- sphericalSegment(P, Q, 100L) pq <- t(apply(PQ, 1L, stereog)) dists <- sqrt(apply(pq, 1L, crossprod)) cylinder3d(pq, radius = dists/15, sides = 60) } # projected vertices vs <- apply(vertices, c(1L,2L), stereog) ####~~~~ plot ~~~~#### open3d(windowRect = c(50, 50, 562, 562), zoom = 0.9) bg3d(rgb(54, 57, 64, maxColorValue = 255)) ## plot the edges for(k in 1L:(2L*A*B)){ v1 <- edges[, 1L, k] v2 <- edges[, 2L, k] edge <- stereoEdge(vertices, v1, v2) shade3d(edge, color = "gold") } ## plot the vertices for(i in 1L:A){ for(j in 1L:B){ v <- vs[,i,j] spheres3d(v, radius = sqrt(c(crossprod(v)))/10 , color = "gold2") } }
With Asymptote
settings.render = 4; settings.outformat = "eps"; import tube; size(200,0); currentprojection = orthographic(4,4,4); currentlight = light(gray(0.85), ambient=black, specularfactor=3, (100,100,100), specular=gray(0.9), viewport=false); currentlight.background = rgb("363940ff"); // files to be saved ----------------------------------------------------------- string[] files = { "DP000", "DP001", "DP002", "DP003", "DP004", "DP005", "DP006", "DP007", "DP008", "DP009", "DP010", "DP011", "DP012", "DP013", "DP014", "DP015", "DP016", "DP017", "DP018", "DP019", "DP020", "DP021", "DP022", "DP023", "DP024", "DP025", "DP026", "DP027", "DP028", "DP029", "DP030", "DP031", "DP032", "DP033", "DP034", "DP035", "DP036", "DP037", "DP038", "DP039", "DP040", "DP041", "DP042", "DP043", "DP044", "DP045", "DP046", "DP047", "DP048", "DP049", "DP050", "DP051", "DP052", "DP053", "DP054", "DP055", "DP056", "DP057", "DP058", "DP059", "DP060", "DP061", "DP062", "DP063", "DP064", "DP065", "DP066", "DP067", "DP068", "DP069", "DP070", "DP071", "DP072", "DP073", "DP074", "DP075", "DP076", "DP077", "DP078", "DP079", "DP080", "DP081", "DP082", "DP083", "DP084", "DP085", "DP086", "DP087", "DP088", "DP089", "DP090", "DP091", "DP092", "DP093", "DP094", "DP095", "DP096", "DP097", "DP098", "DP099", "DP100", "DP101", "DP102", "DP103", "DP104", "DP105", "DP106", "DP107", "DP108", "DP109", "DP110", "DP111", "DP112", "DP113", "DP114", "DP115", "DP116", "DP117", "DP118", "DP119", "DP120", "DP121", "DP122", "DP123", "DP124", "DP125", "DP126", "DP127", "DP128", "DP129", "DP130", "DP131", "DP132", "DP133", "DP134", "DP135", "DP136", "DP137", "DP138", "DP139", "DP140", "DP141", "DP142", "DP143", "DP144", "DP145", "DP146", "DP147", "DP148", "DP149", "DP150", "DP151", "DP152", "DP153", "DP154", "DP155", "DP156", "DP157", "DP158", "DP159", "DP160", "DP161", "DP162", "DP163", "DP164", "DP165", "DP166", "DP167", "DP168", "DP169", "DP170", "DP171", "DP172", "DP173", "DP174", "DP175", "DP176", "DP177", "DP178", "DP179"}; // lexicographic order --------------------------------------------------------- bool dominates(int[] e1, int[] e2){ return e2[0]>e1[0] || (e2[0]==e1[0] && e2[1]>e1[1]); } // vertices -------------------------------------------------------------------- int A = 8; int B = 4; struct quadruple { real x; real y; real z; real t; } real[][] poly1 = new real[A][2]; for(int i = 0; i < A; ++i){ poly1[i][0] = cos(i/A*2pi); poly1[i][1] = sin(i/A*2pi); } real[][] poly2 = new real[B][2]; for(int i = 0; i < B; ++i){ poly2[i][0] = cos(pi/B+i/B*2pi); poly2[i][1] = sin(pi/B+i/B*2pi); } quadruple[][] vertices = new quadruple[A][B]; for(int i = 0; i < A; ++i){ for(int j = 0; j < B; ++j){ quadruple v; v.x = poly1[i][0]; v.y = poly1[i][1]; v.z = poly2[j][0]; v.t = poly2[j][1]; vertices[i][j] = v; } } // edges ----------------------------------------------------------------------- int[][][] edges; for(int i = 0; i < A; ++i){ for(int j = 0; j < B; ++j){ int[] e = {i,j}; int[] candidate = {i,(j-1)%B}; if(dominates(e,candidate)){ int[][] edge = {e,candidate}; edges.push(edge); } int[] candidate = {i,(j+1)%B}; if(dominates(e,candidate)){ int[][] edge = {e,candidate}; edges.push(edge); } int[] candidate = {(i-1)%A,j}; if(dominates(e,candidate)){ int[][] edge = {e,candidate}; edges.push(edge); } int[] candidate = {(i+1)%A,j}; if(dominates(e,candidate)){ int[][] edge = {e,candidate}; edges.push(edge); } } } // rotation in 4D space (right-isoclinic) -------------------------------------- quadruple rotate4d(real alpha, real beta, real xi, quadruple vec){ real a = cos(xi); real b = sin(alpha)*cos(beta)*sin(xi); real c = sin(alpha)*sin(beta)*sin(xi); real d = cos(alpha)*sin(xi); real p = vec.x; real q = vec.y; real r = vec.z; real s = vec.t; quadruple out; out.x = a*p - b*q - c*r - d*s; out.y = a*q + b*p + c*s - d*r; out.z = a*r - b*s + c*p + d*q; out.t = a*s + b*r - c*q + d*p; return out; } // stereographic projection ---------------------------------------------------- triple stereog(quadruple A, real r){ return (A.x, A.y, A.z) / (r - A.t); } // stereographic path ---------------------------------------------------------- path3 stereoPath(quadruple A, quadruple B, real r, int n){ path3 out; for(int i = 0; i <= n; ++i){ real t = i/n; quadruple M; real x = (1-t)*A.x + t*B.x; real y = (1-t)*A.y + t*B.y; real z = (1-t)*A.z + t*B.z; real t = (1-t)*A.t + t*B.t; real lg = sqrt(x*x + y*y + z*z + t*t) / r; M.x = x / lg; M.y = y / lg; M.z = z / lg; M.t = t / lg; out = out .. stereog(M, r); } return out; } // section transformation ------------------------------------------------------ transform T(path3 p3, real t, int n){ triple M = relpoint(p3, t/(n/4)); return scale(length(M)/15); } // bounding box ---------------------------------------------------------------- real f=3, h = 4.5, g = 1.5; path3 boundingbox = (-h,0,-f)--(-h,0,g)--(h,0,f)--(h,0,-g)--cycle; // draw the duoprism ----------------------------------------------------------- int n = 100; real r = sqrt(2); real alpha = pi/2, beta = 0; for(int file = 0; file < 180; ++file){ real xi = 2*file*pi/180; picture pic; // draw bounding box draw(pic, boundingbox, rgb("363940ff")+opacity(0)); // draw edges for(int k = 0; k < 2*A*B; ++k){ quadruple A = vertices[edges[k][0][0]][edges[k][0][1]]; quadruple B = vertices[edges[k][1][0]][edges[k][1][1]]; path3 p3 = stereoPath(rotate4d(alpha, beta, xi, A), rotate4d(alpha, beta, xi, B), r, n); transform S(real t){ return T(p3, t, n); } draw(pic, tube(p3, unitcircle, S), rgb(139,0,139), render(compression=Low, merge=true)); } // draw vertices for(int i = 0; i < A; ++i){ for(int j = 0; j < B; ++j){ triple Asg = stereog(rotate4d(alpha, beta, xi, vertices[i][j]), r); draw(pic, shift(Asg)*scale3(length(Asg)/10)*unitsphere, purple); } } // add and save picture add(pic); shipout(files[file], bbox(rgb("363940ff"), FillDraw(rgb("363940ff")))); erase(); } /* to do the animation gs -dSAFER -dBATCH -dNOPAUSE -dEPSCrop -sDEVICE=png16m -r600 -sOutputFile=zpic%03d.png DP*.eps mogrify -resize 512x zpic*.png gifski --fps 12 zpic*.png -o DuoprismStereo.gif */
With POV-Ray
#version 3.7; global_settings { assumed_gamma 1 } #include "colors.inc" #include "textures.inc" /* camera */ camera { location <-11, 7, -32> look_at 0 angle 45 right x*image_width/image_height } // sun ------------------------------------------------------------------------- light_source {< 4000,6000,-6000> color rgb<1,1,1>*0.9} // sun light_source {<-11, 7,-32> color rgb<0.9,0.9,1>*0.1 shadowless} // flash // sky ------------------------------------------------------------------------- plane { <0,1,0>, 1 hollow texture { pigment { bozo turbulence 1.3 color_map { [0.00 rgb <0.24, 0.32, 1.0>*0.6] [0.75 rgb <0.24, 0.32, 1.0>*0.6] [0.83 rgb <1,1,1>] [0.95 rgb <0.25,0.25,0.25>] [1.0 rgb <0.5,0.5,0.5>] } scale<1,1,1>*2.5 translate< 0,0,3> } finish { ambient 1 diffuse 0 } } scale 10000 } // fog on the ground ----------------------------------------------------------- fog { fog_type 2 distance 50 color Gray10 fog_offset 0.1 fog_alt 1.5 turbulence 1.8 } // ground ---------------------------------------------------------------------- plane { <0,1,0>, 0 texture { pigment { color rgb <0.95,0.9,0.73>*0.35 } normal { bumps 2 scale <0.25,0.25,0.25>*0.5 turbulence 0.5 } finish { phong 0.1 } } } /* ----- vertices ----- */ #declare A = 4; #declare B = 30; #declare poly1 = array[A]; #for(i,0,A-1) #declare poly1[i] = array[2] {cos(i/A*2*pi), sin(i/A*2*pi)}; #end #declare poly2 = array[B]; #for(i,0,B-1) #declare poly2[i] = array[2] {cos(i/B*2*pi), sin(i/B*2*pi)}; #end #declare vertices = array[A][B]; #for(i,0,A-1) #for(j,0,B-1) #declare vertices[i][j] = < poly1[i][0], poly1[i][1], poly2[j][0], poly2[j][1] >; #end #end /* ----- edges ----- */ #macro dominates(e1,e2) (e2[0]>e1[0]) | ((e2[0]=e1[0]) & (e2[1]>e1[1])) #end #declare nedges = 2*A*B; #declare edges = array[nedges]; #declare k=0; #for(i,0,A-1) #for(j,0,B-1) #local e = array[2] {i,j}; #local candidate = array[2] {i,mod(mod(j-1,B)+B,B)}; #if(dominates(e,candidate)) #local edge = array[2] {e,candidate}; #declare edges[k] = edge; #declare k = k+1; #end #local candidate = array[2] {i,mod(mod(j+1,B)+B,B)}; #if(dominates(e,candidate)) #local edge = array[2] {e,candidate}; #declare edges[k] = edge; #declare k = k+1; #end #local candidate = array[2] {mod(mod(i-1,A)+A,A),j}; #if(dominates(e,candidate)) #local edge = array[2] {e,candidate}; #declare edges[k] = edge; #declare k = k+1; #end #local candidate = array[2] {mod(mod(i+1,A)+A,A),j}; #if(dominates(e,candidate)) #local edge = array[2] {e,candidate}; #declare edges[k] = edge; #declare k = k+1; #end #end #end /* rotation in 4D space */ #macro rotate4d(theta,phi,xi,vec) #local a = cos(xi); #local b = sin(theta)*cos(phi)*sin(xi); #local c = sin(theta)*sin(phi)*sin(xi); #local d = cos(theta)*sin(xi); #local p = vec.x; #local q = vec.y; #local r = vec.z; #local s = vec.t; < a*p - b*q - c*r - d*s , a*q + b*p + c*s - d*r , a*r - b*s + c*p + d*q , a*s + b*r - c*q + d*p > #end /* stereographic projection */ #macro StereographicProjection(q) <q.x,q.y,q.z> / (sqrt(2)-q.t) #end /* rotated and projected vertices */ #macro ProjectedVertices(theta,phi,xi) #local out = array[A][B]; #for(i,0,A-1) #for(j,0,B-1) #local out[i][j] = StereographicProjection( rotate4d(theta,phi,xi,vertices[i][j]) ); #end #end out #end /* macro spherical segment */ #macro vlength4(P) sqrt(P.x*P.x + P.y*P.y + P.z*P.z + P.t*P.t) #end #macro sphericalSegment(P, Q, n) #local out = array[n+1]; #for(i, 0, n) #local pt = P + (i/n)*(Q-P); #local out[i] = sqrt(2)/vlength4(pt) * pt; #end out #end /* macro to draw an edge */ #macro Edge(verts, v1, v2, theta, phi, xi, Tex) #local P = verts[v1[0]][v1[1]]; #local Q = verts[v2[0]][v2[1]]; #local PQ = sphericalSegment(P, Q, 100); sphere_sweep { b_spline 101 #for(k,0,100) #local O = StereographicProjection(rotate4d(theta,phi,xi,PQ[k])); O vlength(O)/15 #end texture { Tex } } #end /*-----------------------------------------*/ /*----- draw the duoprism ------*/ /*-----------------------------------------*/ #declare theta = pi/2; #declare phi = 0; #declare xi = 2*frame_number*pi/180; #declare vs = ProjectedVertices(theta, phi, xi); #declare edgeTexture = texture { pigment { color Red } finish { ambient .1 diffuse .9 reflection 0 specular 1 metallic } }; object { union { /* draw edges */ #for(i, 0, 2*A*B-1) Edge(vertices, edges[i][0], edges[i][1], theta, phi, xi, edgeTexture) #end /* draw vertices */ #for(i,0,A-1) #for(j,0,B-1) sphere { vs[i][j], vlength(vs[i][j])/10 texture { edgeTexture } } #end #end } translate <-3, 6, -15> scale 0.8 } /* ini file Width = 512 Height = 512 Antialias = On Antialias_Threshold = 0.3 Input_File_Name = DuoprismStereographic.pov Initial_Clock = 0 Final_Clock = 1 Initial_Frame = 0 Final_Frame = 179 Subset_Start_Frame = 0 Cyclic_Animation = on */
Here is another one. This is a hexagonal duoprism with a cell colored in red.
#version 3.7; global_settings { assumed_gamma 1 } #include "colors.inc" #include "textures.inc" // camera ---------------------------------------------------------------------- camera { location <0, 0,-10> look_at 0 angle 45 right x*image_width/image_height } // light sources --------------------------------------------------------------- light_source { <0,0,-100> White shadowless } light_source { <100,0,-100> White shadowless } // moon ------------------------------------------------------------------------ light_source { <-1000, 800, 3000> color White shadowless looks_like { sphere { <0,0,0>, 300 texture { pigment { color Yellow } normal { bumps 0.5 scale 50 } finish { emission 0.8 diffuse 0.2 phong 1 } } } } } // sky ------------------------------------------------------------------------- plane { <0,1,0>, 1 hollow texture { pigment { color rgb <0.01, 0.01, 0.2> } finish { emission 0.5 diffuse 0.5 } } scale 10000 } // the clouds ------------------------------------------------------------------ plane { <0,1,0>,1 hollow texture { pigment { bozo turbulence 1.3 color_map { [0.00 rgb <0.24, 0.32, 1.0>*0.6] [0.75 rgb <0.24, 0.32, 1.0>*0.6] [0.83 rgb <1,1,1> ] [0.95 rgb <0.25,0.25,0.25> ] [1.00 rgb <0.5,0.5,0.5> ] } scale 2.5 translate <0,1,0> } finish { emission 0.25 diffuse 0 } } scale 5000 } // fog on the ground ----------------------------------------------------------- fog { fog_type 2 distance 50 color Gray50 fog_offset 0.1 fog_alt 1.5 turbulence 1.8 } // sea ------------------------------------------------------------------------- plane { <0,1,0>, -1 hollow texture{ pigment{ rgb <.098,.098,.439> } finish { ambient 0.15 diffuse 0.55 brilliance 6.0 phong 0.8 phong_size 120 reflection 0.2 } normal { bumps 0.95 turbulence .05 scale <1,0.25,1> } } } // vertices -------------------------------------------------------------------- #declare a = sqrt(3) / 2; #declare vertices = array[36] { <a, 0.5, a, 0.5>, <a, 0.5, 0.0, 1.0>, <a, 0.5, -a, 0.5>, <a, 0.5, -a, -0.5>, <a, 0.5, 0.0, -1.0>, <a, 0.5, a, -0.5>, <0.0, 1.0, a, 0.5>, <0.0, 1.0, 0.0, 1.0>, <0.0, 1.0, -a, 0.5>, <0.0, 1.0, -a, -0.5>, <0.0, 1.0, 0.0, -1.0>, <0.0, 1.0, a, -0.5>, <-a, 0.5, a, 0.5>, <-a, 0.5, 0.0, 1.0>, <-a, 0.5, -a, 0.5>, <-a, 0.5, -a, -0.5>, <-a, 0.5, 0.0, -1.0>, <-a, 0.5, a, -0.5>, <-a, -0.5, a, 0.5>, <-a, -0.5, 0.0, 1.0>, <-a, -0.5, -a, 0.5>, <-a, -0.5, -a, -0.5>, <-a, -0.5, 0.0, -1.0>, <-a, -0.5, a, -0.5>, <0.0, -1.0, a, 0.5>, <0.0, -1.0, 0.0, 1.0>, <0.0, -1.0, -a, 0.5>, <0.0, -1.0, -a, -0.5>, <0.0, -1.0, 0.0, -1.0>, <0.0, -1.0, a, -0.5>, <a, -0.5, a, 0.5>, <a, -0.5, 0.0, 1.0>, <a, -0.5, -a, 0.5>, <a, -0.5, -a, -0.5>, <a, -0.5, 0.0, -1.0>, <a, -0.5, a, -0.5> }; #declare facetVertices = array[12] {0,5,6,30,11,35,12,17,18,23,24,29}; #declare otherVertices = array[24] {1,2,3,4,7,8, 9,10,13,14,15,16, 19,20,21,22,25,26, 27,28,31,32,33,34}; // edges ------------------------------------------------------------------- #declare facetEdges = array[18][2] { {0, 5}, {0, 6}, {0, 30}, {5, 11}, {5, 35}, {6, 11}, {6, 12}, {11, 17}, {12, 17}, {12, 18}, {17, 23}, {18, 23}, {18, 24}, {23, 29}, {24, 29}, {24, 30}, {29, 35}, {30, 35} }; #declare otherEdges = array[54][2] { {0, 1}, {1, 2}, {1, 7}, {1, 31}, {2, 3}, {2, 8}, {2, 32}, {3, 4}, {3, 9}, {3, 33}, {4, 5}, {4, 10}, {4, 34}, {6, 7}, {7, 8}, {7, 13}, {8, 9}, {8, 14}, {9, 10}, {9, 15}, {10, 11}, {10, 16}, {12, 13}, {13, 14}, {13, 19}, {14, 15}, {14, 20}, {15, 16}, {15, 21}, {16, 17}, {16, 22}, {18, 19}, {19, 20}, {19, 25}, {20, 21}, {20, 26}, {21, 22}, {21, 27}, {22, 23}, {22, 28}, {24, 25}, {25, 26}, {25, 31}, {26, 27}, {26, 32}, {27, 28}, {27, 33}, {28, 29}, {28, 34}, {30, 31}, {31, 32}, {32, 33}, {33, 34}, {34, 35} }; // macros ---------------------------------------------------------------------- #macro vlength4(P) sqrt(P.x*P.x + P.y*P.y + P.z*P.z + P.t*P.t) #end #macro sphericalSegment(P, Q, n) #local out = array[n+1]; #for(i, 0, n) #local pt = P + (i/n)*(Q-P); #local out[i] = sqrt(2)/vlength4(pt) * pt; #end out #end #macro rotate4d(theta,phi,xi,vec) #local a = cos(xi); #local b = sin(theta)*cos(phi)*sin(xi); #local c = sin(theta)*sin(phi)*sin(xi); #local d = cos(theta)*sin(xi); #local p = vec.x; #local q = vec.y; #local r = vec.z; #local s = vec.t; < a*p - b*q - c*r - d*s , a*q + b*p + c*s - d*r , a*r - b*s + c*p + d*q , a*s + b*r - c*q + d*p > #end #macro StereographicProjection(q) acos(q.t/sqrt(2))/sqrt(2-q.t*q.t) * <q.x,q.y,q.z> #end #macro ProjectedFacetVertices(theta, phi, xi) #local out = array[12]; #for(i, 0, 11) #local out[i] = StereographicProjection( rotate4d(theta, phi, xi, vertices[facetVertices[i]]) ); #end out #end #macro ProjectedOtherVertices(theta, phi, xi) #local out = array[24]; #for(i, 0, 23) #local out[i] = StereographicProjection( rotate4d(theta, phi, xi, vertices[otherVertices[i]]) ); #end out #end // texture --------------------------------------------------------------------- #declare edgeTexture1 = texture { New_Penny finish { ambient 0.01 diffuse 2 reflection 0 brilliance 8 specular 0.1 roughness 0.1 } }; #declare edgeTexture2 = texture { pigment { Red } finish { ambient 0.01 diffuse 2 reflection 0 brilliance 8 specular 0.1 roughness 0.1 } }; // draw an edge ---------------------------------------------------------------- #macro Edge(verts, v1, v2, theta, phi, xi, Tex) #local P = verts[v1]; #local Q = verts[v2]; #local PQ = sphericalSegment(P, Q, 100); sphere_sweep { b_spline 101 #for(k,0,100) #local O = StereographicProjection(rotate4d(theta,phi,xi,PQ[k])); O vlength(O)/20 #end texture { Tex } } #end // draw ------------------------------------------------------------------------ #declare theta = pi/2; #declare phi = 0; #declare xi = 2*frame_number*pi/180; #declare vsFacet = ProjectedFacetVertices(theta, phi, xi); #declare vsOther = ProjectedOtherVertices(theta, phi, xi); object { union { #for(i, 0, 53) Edge(vertices, otherEdges[i][0], otherEdges[i][1], theta, phi, xi, edgeTexture1) #end #for(i, 0, 17) Edge(vertices, facetEdges[i][0], facetEdges[i][1], theta, phi, xi, edgeTexture2) #end #for(i, 0, 23) sphere { vsOther[i], vlength(vsOther[i])/10 texture { edgeTexture1 } } #end #for(i, 0, 11) sphere { vsFacet[i], vlength(vsFacet[i])/10 texture { edgeTexture2 } } #end } scale 0.5 rotate <60, 0, 0> translate <0, 0.5, -2> }
To leave a comment for the author, please follow the link and comment on their blog: Saturn Elephant.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.