Building A base dplyr With Primitives: Grouped Operations, Pipes and More!

[This article was first published on Random R Ramblings, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Introduction

In my last post we looked at how we can recreate base equivalents of the dplyr functions select(), filter(), mutate() and arrange(), amongst others. I wrote these functions and presented them in a new package called poorman. In this post I will be discussing new functionality that I have since added to poorman including grouped operations, renaming columns, summarising data and even poorman’s very own pipe operator!

Group By

The base Way

Typically in the past when I have performed grouped operations using base I have used the tried and tested split-apply-combine approach. That is, I split the data.frame on a grouping variable, I apply a function and then I combine the parts back together. Let’s take a look at what I mean using the mtcars dataset by splitting the data into groups representing each combination of transmission type and number of cylinders (see ?datasets::mtcars for more details about this dataset).

# Split the data into a list of data.frames - one for each group
split <- split(mtcars, list(mtcars$am, mtcars$cyl))
# Apply the mean function to each data.frame's mpg column
apply <- lapply(
  split,
  function(x) {
    x[, "meanMpg"] <- mean(x$mpg)
    x
  }
)
# Stitch each of the lists back into one data.frame
combine <- do.call(rbind, unname(apply))
combine
#                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb  meanMpg
# Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2 22.90000
# Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2 22.90000
# Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1 22.90000
# Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1 28.07500
# Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1 28.07500
# Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2 28.07500
# Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1 28.07500
# Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1 28.07500
# Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2 28.07500
# Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2 28.07500
# Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2 28.07500
# Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1 19.12500
# Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1 19.12500
# Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4 19.12500
# Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4 19.12500
# Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4 20.56667
# Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4 20.56667
# Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6 20.56667
# Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 15.05000
# Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4 15.05000
# Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3 15.05000
# Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3 15.05000
# Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3 15.05000
# Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4 15.05000
# Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4 15.05000
# Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4 15.05000
# Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2 15.05000
# AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2 15.05000
# Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4 15.05000
# Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2 15.05000
# Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4 15.40000
# Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8 15.40000

Note that here I unname() the list of data.frames to avoid rbind() prepending the row names with the group information. This is a really nice, flexible way to perform grouped operations using base. There are in fact many other ways that this type of operation can be achieved; the flexibility of base is what makes it so great.

The poorman Way

poorman aims to be a direct replacement for dplyr, the idea being that loading poorman and running your script written with dplyr code should return the same results. Therefore if you’re familiar with the dplyr API then the next piece of code should look very familiar.

library(poorman)
mtcars %>%
  group_by(am, cyl) %>%
  mutate(meanMpg = mean(mpg))
#                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb  meanMpg
# Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2 22.90000
# Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2 22.90000
# Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1 22.90000
# Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1 28.07500
# Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1 28.07500
# Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2 28.07500
# Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1 28.07500
# Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1 28.07500
# Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2 28.07500
# Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2 28.07500
# Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2 28.07500
# Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1 19.12500
# Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1 19.12500
# Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4 19.12500
# Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4 19.12500
# Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4 20.56667
# Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4 20.56667
# Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6 20.56667
# Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 15.05000
# Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4 15.05000
# Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3 15.05000
# Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3 15.05000
# Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3 15.05000
# Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4 15.05000
# Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4 15.05000
# Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4 15.05000
# Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2 15.05000
# AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2 15.05000
# Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4 15.05000
# Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2 15.05000
# Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4 15.40000
# Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8 15.40000
# 
# Groups:  am, cyl

In order to achieve this, I need to have a way to perform grouped operations for functions such as mutate() and filter(). The easiest solution I could think of therefore is an S3 class system. So the group_by() function simply applies a "grouped_data" class to the data and then the mutate() S3 generic knows to dispatch to the mutate.grouped_data() method. For more information on the S3 class system I recommend checking out Advanced R.

Ungrouping

poorman also offers a replica of the dplyr::ungroup() function. Let’s take a look.

mtcars %>%
  group_by(am, cyl) %>%
  mutate(meanMpg = mean(mpg)) %>%
  ungroup(am)
#                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb  meanMpg
# Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2 22.90000
# Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2 22.90000
# Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1 22.90000
# Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1 28.07500
# Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1 28.07500
# Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2 28.07500
# Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1 28.07500
# Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1 28.07500
# Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2 28.07500
# Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2 28.07500
# Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2 28.07500
# Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1 19.12500
# Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1 19.12500
# Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4 19.12500
# Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4 19.12500
# Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4 20.56667
# Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4 20.56667
# Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6 20.56667
# Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 15.05000
# Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4 15.05000
# Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3 15.05000
# Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3 15.05000
# Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3 15.05000
# Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4 15.05000
# Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4 15.05000
# Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4 15.05000
# Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2 15.05000
# AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2 15.05000
# Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4 15.05000
# Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2 15.05000
# Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4 15.40000
# Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8 15.40000
# 
# Groups:  cyl

We see here that the printing method tells us the remaining group: cyl.

Additional Functionality

The Pipe

You will have noticed that I am piping commands together in the above section, however I am not using the magrittr pipe. I implemented my own version which is a very small piece of code. This means users no longer need to load magrittr separately (previously poorman only had magrittr as a suggested package so as not to force the installation on users).

`%>%` <- function(lhs, rhs) {
  lhs <- substitute(lhs)
  rhs <- substitute(rhs)
  eval(as.call(c(rhs[[1L]], lhs, as.list(rhs[-1L]))), envir = parent.frame())
}

Rename

I also managed to add rename(). For this I took advantage of colnames<- in combination with the inset() function I defined in my last post ([<-). I don’t want to make this post too heavy on the code so feel free to take a look at the code yourself to see how exactly I achieved this.

Now I am able to pass key-value pairs of unquoted column names to rename columns. See below for an example.

mtcars %>%
  rename(MPG = mpg, numCyls = cyl)
#                      MPG numCyls  disp  hp drat    wt  qsec vs am gear carb
# Mazda RX4           21.0       6 160.0 110 3.90 2.620 16.46  0  1    4    4
# Mazda RX4 Wag       21.0       6 160.0 110 3.90 2.875 17.02  0  1    4    4
# Datsun 710          22.8       4 108.0  93 3.85 2.320 18.61  1  1    4    1
# Hornet 4 Drive      21.4       6 258.0 110 3.08 3.215 19.44  1  0    3    1
# Hornet Sportabout   18.7       8 360.0 175 3.15 3.440 17.02  0  0    3    2
# Valiant             18.1       6 225.0 105 2.76 3.460 20.22  1  0    3    1
# Duster 360          14.3       8 360.0 245 3.21 3.570 15.84  0  0    3    4
# Merc 240D           24.4       4 146.7  62 3.69 3.190 20.00  1  0    4    2
# Merc 230            22.8       4 140.8  95 3.92 3.150 22.90  1  0    4    2
# Merc 280            19.2       6 167.6 123 3.92 3.440 18.30  1  0    4    4
# Merc 280C           17.8       6 167.6 123 3.92 3.440 18.90  1  0    4    4
# Merc 450SE          16.4       8 275.8 180 3.07 4.070 17.40  0  0    3    3
# Merc 450SL          17.3       8 275.8 180 3.07 3.730 17.60  0  0    3    3
# Merc 450SLC         15.2       8 275.8 180 3.07 3.780 18.00  0  0    3    3
# Cadillac Fleetwood  10.4       8 472.0 205 2.93 5.250 17.98  0  0    3    4
# Lincoln Continental 10.4       8 460.0 215 3.00 5.424 17.82  0  0    3    4
# Chrysler Imperial   14.7       8 440.0 230 3.23 5.345 17.42  0  0    3    4
# Fiat 128            32.4       4  78.7  66 4.08 2.200 19.47  1  1    4    1
# Honda Civic         30.4       4  75.7  52 4.93 1.615 18.52  1  1    4    2
# Toyota Corolla      33.9       4  71.1  65 4.22 1.835 19.90  1  1    4    1
# Toyota Corona       21.5       4 120.1  97 3.70 2.465 20.01  1  0    3    1
# Dodge Challenger    15.5       8 318.0 150 2.76 3.520 16.87  0  0    3    2
# AMC Javelin         15.2       8 304.0 150 3.15 3.435 17.30  0  0    3    2
# Camaro Z28          13.3       8 350.0 245 3.73 3.840 15.41  0  0    3    4
# Pontiac Firebird    19.2       8 400.0 175 3.08 3.845 17.05  0  0    3    2
# Fiat X1-9           27.3       4  79.0  66 4.08 1.935 18.90  1  1    4    1
# Porsche 914-2       26.0       4 120.3  91 4.43 2.140 16.70  0  1    5    2
# Lotus Europa        30.4       4  95.1 113 3.77 1.513 16.90  1  1    5    2
# Ford Pantera L      15.8       8 351.0 264 4.22 3.170 14.50  0  1    5    4
# Ferrari Dino        19.7       6 145.0 175 3.62 2.770 15.50  0  1    5    6
# Maserati Bora       15.0       8 301.0 335 3.54 3.570 14.60  0  1    5    8
# Volvo 142E          21.4       4 121.0 109 4.11 2.780 18.60  1  1    4    2

Using this function, I was able to implement key-value select() statements too!

mtcars %>%
  select(MPG = mpg, numCyls = cyl, numGears = gear)
#                      MPG numCyls numGears
# Mazda RX4           21.0       6        4
# Mazda RX4 Wag       21.0       6        4
# Datsun 710          22.8       4        4
# Hornet 4 Drive      21.4       6        3
# Hornet Sportabout   18.7       8        3
# Valiant             18.1       6        3
# Duster 360          14.3       8        3
# Merc 240D           24.4       4        4
# Merc 230            22.8       4        4
# Merc 280            19.2       6        4
# Merc 280C           17.8       6        4
# Merc 450SE          16.4       8        3
# Merc 450SL          17.3       8        3
# Merc 450SLC         15.2       8        3
# Cadillac Fleetwood  10.4       8        3
# Lincoln Continental 10.4       8        3
# Chrysler Imperial   14.7       8        3
# Fiat 128            32.4       4        4
# Honda Civic         30.4       4        4
# Toyota Corolla      33.9       4        4
# Toyota Corona       21.5       4        3
# Dodge Challenger    15.5       8        3
# AMC Javelin         15.2       8        3
# Camaro Z28          13.3       8        3
# Pontiac Firebird    19.2       8        3
# Fiat X1-9           27.3       4        4
# Porsche 914-2       26.0       4        5
# Lotus Europa        30.4       4        5
# Ford Pantera L      15.8       8        5
# Ferrari Dino        19.7       6        5
# Maserati Bora       15.0       8        5
# Volvo 142E          21.4       4        4

Summary

Finally I have added a copy of the summarise() function. This was probably the trickiest piece of code to write for the package and I am not completely satisfied with my solution although it works and is seemingly quite quick (on my 2016 MacBook Pro). If you’re interested in taking a look at the implementation and making suggestions then the code can be found here.

mtcars %>%
  group_by(am, cyl) %>%
  summarise(meanMpg = mean(mpg), sumDisp = sum(disp))
#   am cyl  meanMpg sumDisp
# 1  0   4     22.9   407.6
# 2  1   4   28.075   748.9
# 3  0   6   19.125   818.2
# 4  1   6 20.56667     465
# 5  0   8    15.05  4291.4
# 6  1   8     15.4     652

Recently there was a very interesting Twitter discussion on this topic which led to an comprehensive list of examples for performing this operation in base.

Conclusion

I believe that poorman now offers the core of what dplyr has to offer using only base, therefore zero dependencies (not including development based dependencies such as roxygen2). I now need to really start writing some serious tests which I will endeavour to do using tinytest before adding any additional functionality. Without tests, any package is rather worthless in my opinion. If there is functionality you would like to see added to the package then please feel free to submit an issue or open a pull request.

To leave a comment for the author, please follow the link and comment on their blog: Random R Ramblings.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)