[This article was first published on R on Will Hipson, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Binomial probability is the relatively simple case of estimating the proportion of successes in a series of yes/no trials. The perennial example is estimating the proportion of heads in a series of coin flips where each trial is independent and has possibility of heads or tails. Because of its relative simplicity, the binomial case is a great place to start when learning about Bayesian analysis. In this post, I will provide a gentle introduction to Bayesian analysis using binomial probability as an example.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
To leave a comment for the author, please follow the link and comment on their blog: R on Will Hipson.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.