Stereographic truncated tesseract
[This article was first published on Saturn Elephant, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
- The stereographic truncated tesseract
- Drawing with rgl (R)
- Drawing with Asymptote
- Drawing with POV-Ray
The stereographic truncated tesseract
We show how to draw a stereographic truncated tesseract with rgl (R), Asymptote, and POV-Ray.
The truncated tesseract is a uniform polychoron. Among its cells, there are sixteen tetrahedra, and we fill the faces of these tetrahedra.
Using Asymptote and POV-Ray, we include a 4D rotation to animate the figure.
We call it stereographic because we map each edge to the 3-sphere before applying the stereographic projection.
Drawing with rgl (R)
library(rgl) library(cxhull) library(abind) # vertices ##################################################################### sqr2p1 <- sqrt(2) + 1 vertices <- rbind( c(-1, -sqr2p1, -sqr2p1, -sqr2p1), c(-1, -sqr2p1, -sqr2p1, sqr2p1), c(-1, -sqr2p1, sqr2p1, -sqr2p1), c(-1, -sqr2p1, sqr2p1, sqr2p1), c(-1, sqr2p1, -sqr2p1, -sqr2p1), c(-1, sqr2p1, -sqr2p1, sqr2p1), c(-1, sqr2p1, sqr2p1, -sqr2p1), c(-1, sqr2p1, sqr2p1, sqr2p1), c(1, -sqr2p1, -sqr2p1, -sqr2p1), c(1, -sqr2p1, -sqr2p1, sqr2p1), c(1, -sqr2p1, sqr2p1, -sqr2p1), c(1, -sqr2p1, sqr2p1, sqr2p1), c(1, sqr2p1, -sqr2p1, -sqr2p1), c(1, sqr2p1, -sqr2p1, sqr2p1), c(1, sqr2p1, sqr2p1, -sqr2p1), c(1, sqr2p1, sqr2p1, sqr2p1), c(-sqr2p1, -1, -sqr2p1, -sqr2p1), c(-sqr2p1, -1, -sqr2p1, sqr2p1), c(-sqr2p1, -1, sqr2p1, -sqr2p1), c(-sqr2p1, -1, sqr2p1, sqr2p1), c(-sqr2p1, 1, -sqr2p1, -sqr2p1), c(-sqr2p1, 1, -sqr2p1, sqr2p1), c(-sqr2p1, 1, sqr2p1, -sqr2p1), c(-sqr2p1, 1, sqr2p1, sqr2p1), c(sqr2p1, -1, -sqr2p1, -sqr2p1), c(sqr2p1, -1, -sqr2p1, sqr2p1), c(sqr2p1, -1, sqr2p1, -sqr2p1), c(sqr2p1, -1, sqr2p1, sqr2p1), c(sqr2p1, 1, -sqr2p1, -sqr2p1), c(sqr2p1, 1, -sqr2p1, sqr2p1), c(sqr2p1, 1, sqr2p1, -sqr2p1), c(sqr2p1, 1, sqr2p1, sqr2p1), c(-sqr2p1, -sqr2p1, -1, -sqr2p1), c(-sqr2p1, -sqr2p1, -1, sqr2p1), c(-sqr2p1, -sqr2p1, 1, -sqr2p1), c(-sqr2p1, -sqr2p1, 1, sqr2p1), c(-sqr2p1, sqr2p1, -1, -sqr2p1), c(-sqr2p1, sqr2p1, -1, sqr2p1), c(-sqr2p1, sqr2p1, 1, -sqr2p1), c(-sqr2p1, sqr2p1, 1, sqr2p1), c(sqr2p1, -sqr2p1, -1, -sqr2p1), c(sqr2p1, -sqr2p1, -1, sqr2p1), c(sqr2p1, -sqr2p1, 1, -sqr2p1), c(sqr2p1, -sqr2p1, 1, sqr2p1), c(sqr2p1, sqr2p1, -1, -sqr2p1), c(sqr2p1, sqr2p1, -1, sqr2p1), c(sqr2p1, sqr2p1, 1, -sqr2p1), c(sqr2p1, sqr2p1, 1, sqr2p1), c(-sqr2p1, -sqr2p1, -sqr2p1, -1), c(-sqr2p1, -sqr2p1, -sqr2p1, 1), c(-sqr2p1, -sqr2p1, sqr2p1, -1), c(-sqr2p1, -sqr2p1, sqr2p1, 1), c(-sqr2p1, sqr2p1, -sqr2p1, -1), c(-sqr2p1, sqr2p1, -sqr2p1, 1), c(-sqr2p1, sqr2p1, sqr2p1, -1), c(-sqr2p1, sqr2p1, sqr2p1, 1), c(sqr2p1, -sqr2p1, -sqr2p1, -1), c(sqr2p1, -sqr2p1, -sqr2p1, 1), c(sqr2p1, -sqr2p1, sqr2p1, -1), c(sqr2p1, -sqr2p1, sqr2p1, 1), c(sqr2p1, sqr2p1, -sqr2p1, -1), c(sqr2p1, sqr2p1, -sqr2p1, 1), c(sqr2p1, sqr2p1, sqr2p1, -1), c(sqr2p1, sqr2p1, sqr2p1, 1) ) # convex hull is the polytope itself, since it is convex ####################### hull <- cxhull(vertices) # edges ######################################################################## edges <- hull$edges # (triangular) faces of the tetrahedra ######################################### ridgeSizes <- sapply(hull$ridges, function(ridge) length(ridge$vertices)) triangles <- t(sapply(hull$ridges[which(ridgeSizes==3)], function(ridge) ridge$vertices)) # stereographic projection ##################################################### sproj <- function(p, r){ c(p[1], p[2], p[3])/(r-p[4]) } # spherical segment ############################################################ sphericalSegment <- function(P, Q, r, n){ out <- matrix(NA_real_, nrow = n+1, ncol = 4) for(i in 0:n){ pt <- P + (i/n)*(Q-P) out[i+1L, ] <- r/sqrt(c(crossprod(pt))) * pt } out } # stereographic edge ########################################################### stereoEdge <- function(verts, edge, r, n){ P <- verts[edge[1], ] Q <- verts[edge[2], ] PQ <- sphericalSegment(P, Q, r, n) pq <- t(apply(PQ, 1, function(M){sproj(M, r)})) dists <- sqrt(apply(pq, 1, crossprod)) cylinder3d(pq, radius = log1p(dists/4)/4, sides = 60) } # stereographic subdivision (to fill the triangles) ############################ midpoint4 <- function(A, B, r){ M <- (A + B) / 2 lg <- sqrt(c(crossprod(M))) / r M / lg } subdiv0 <- function(A, B, C, r){ mAB <- midpoint4(A, B, r) mAC <- midpoint4(A, C, r) mBC <- midpoint4(B, C, r) out <- array(NA_real_, dim = c(4L, 3L, 4L)) out[1,,] <- rbind(A, mAB, mAC) out[2,,] <- rbind(B, mBC, mAB) out[3,,] <- rbind(C, mAC, mBC) out[4,,] <- rbind(mAB, mBC, mAC) out } subdiv <- function(n, A, B, C, r){ if(n == 1){ return(subdiv0(A, B, C, r)) } triangles <- subdiv(n-1, A, B, C, r) out <- array(NA_real_, dim = c(0L, 3L, 4L)) for(i in 1:(4^(n-1))){ trgl <- triangles[i,,] out <- abind(out, subdiv0(trgl[1L,], trgl[2L,], trgl[3L,], r), along = 1L) } out } # mesh maker ################################################################### stereoTriangle <- function(n, A, B, C, r){ triangles <- subdiv(n, A, B, C, r) ntriangles <- dim(triangles)[1L] indices <- matrix(1L:(3L*ntriangles), nrow = 3L, ncol = ntriangles) vertices <- matrix(NA_real_, nrow = 3L, ncol = 3L*ntriangles) for(i in 1L:ntriangles){ trgl <- triangles[i,,] vertices[, 3L*(i-1L)+1L] <- sproj(trgl[1L,], r) vertices[, 3L*(i-1L)+2L] <- sproj(trgl[2L,], r) vertices[, 3L*(i-1L)+3L] <- sproj(trgl[3L,], r) } mesh <- tmesh3d(vertices, indices, homogeneous = FALSE) Rvcg::vcgClean(mesh, sel = c(0,7), silent = TRUE) } # projected vertices ########################################################### r <- sqrt(1+3*sqr2p1^2) vs <- t(apply(vertices, 1L, function(M){sproj(M, r)})) ####~~~~ plot ~~~~############################################################## open3d(windowRect = c(50, 50, 562, 562), zoom = 0.9) bg3d(rgb(54, 57, 64, maxColorValue = 255)) ## plot the edges for(k in 1L:nrow(edges)){ edge <- stereoEdge(vertices, edges[k,], r, n = 100) shade3d(edge, color = "gold") } ## plot the vertices for(i in 1L:nrow(vs)){ v <- vs[i,] spheres3d(v, radius = log1p(sqrt(c(crossprod(v)))/4)/3, color = "gold2") } ## plot the filled triangles for(i in 1L:nrow(triangles)){ trgl <- triangles[i,] A <- vertices[trgl[1L], ] B <- vertices[trgl[2L], ] C <- vertices[trgl[3L], ] mesh <- stereoTriangle(6, A, B, C, r) shade3d(mesh, color = "red") }
Drawing with Asymptote
settings.render = 4; settings.outformat = "eps"; import tube; size(200,0); currentprojection = orthographic(1, 2, 4); currentlight = light(gray(0.85), ambient=black, specularfactor=3, (100,100,100), specular=gray(0.9), viewport=false); currentlight.background = rgb("363940ff"); // files to be saved ----------------------------------------------------------- string[] files = { "TT000", "TT001", "TT002", "TT003", "TT004", "TT005", "TT006", "TT007", "TT008", "TT009", "TT010", "TT011", "TT012", "TT013", "TT014", "TT015", "TT016", "TT017", "TT018", "TT019", "TT020", "TT021", "TT022", "TT023", "TT024", "TT025", "TT026", "TT027", "TT028", "TT029", "TT030", "TT031", "TT032", "TT033", "TT034", "TT035", "TT036", "TT037", "TT038", "TT039", "TT040", "TT041", "TT042", "TT043", "TT044", "TT045", "TT046", "TT047", "TT048", "TT049", "TT050", "TT051", "TT052", "TT053", "TT054", "TT055", "TT056", "TT057", "TT058", "TT059", "TT060", "TT061", "TT062", "TT063", "TT064", "TT065", "TT066", "TT067", "TT068", "TT069", "TT070", "TT071", "TT072", "TT073", "TT074", "TT075", "TT076", "TT077", "TT078", "TT079", "TT080", "TT081", "TT082", "TT083", "TT084", "TT085", "TT086", "TT087", "TT088", "TT089", "TT090", "TT091", "TT092", "TT093", "TT094", "TT095", "TT096", "TT097", "TT098", "TT099", "TT100", "TT101", "TT102", "TT103", "TT104", "TT105", "TT106", "TT107", "TT108", "TT109", "TT110", "TT111", "TT112", "TT113", "TT114", "TT115", "TT116", "TT117", "TT118", "TT119", "TT120", "TT121", "TT122", "TT123", "TT124", "TT125", "TT126", "TT127", "TT128", "TT129", "TT130", "TT131", "TT132", "TT133", "TT134", "TT135", "TT136", "TT137", "TT138", "TT139", "TT140", "TT141", "TT142", "TT143", "TT144", "TT145", "TT146", "TT147", "TT148", "TT149", "TT150", "TT151", "TT152", "TT153", "TT154", "TT155", "TT156", "TT157", "TT158", "TT159", "TT160", "TT161", "TT162", "TT163", "TT164", "TT165", "TT166", "TT167", "TT168", "TT169", "TT170", "TT171", "TT172", "TT173", "TT174", "TT175", "TT176", "TT177", "TT178", "TT179"}; // vertices -------------------------------------------------------------------- struct quadruple { real x; real y; real z; real t; } quadruple array2quadruple(real[] v){ quadruple q; q.x = v[0]; q.y = v[1]; q.z = v[2]; q.t = v[3]; return q; } real x = 1 + sqrt(2); real r = sqrt(1 + 3 * x * x); real[][] vertices0 = { {-1.0, -x, -x, -x}, {-1.0, -x, -x, x}, {-1.0, -x, x, -x}, {-1.0, -x, x, x}, {-1.0, x, -x, -x}, {-1.0, x, -x, x}, {-1.0, x, x, -x}, {-1.0, x, x, x}, {1.0, -x, -x, -x}, {1.0, -x, -x, x}, {1.0, -x, x, -x}, {1.0, -x, x, x}, {1.0, x, -x, -x}, {1.0, x, -x, x}, {1.0, x, x, -x}, {1.0, x, x, x}, {-x, -1.0, -x, -x}, {-x, -1.0, -x, x}, {-x, -1.0, x, -x}, {-x, -1.0, x, x}, {-x, 1.0, -x, -x}, {-x, 1.0, -x, x}, {-x, 1.0, x, -x}, {-x, 1.0, x, x}, {x, -1.0, -x, -x}, {x, -1.0, -x, x}, {x, -1.0, x, -x}, {x, -1.0, x, x}, {x, 1.0, -x, -x}, {x, 1.0, -x, x}, {x, 1.0, x, -x}, {x, 1.0, x, x}, {-x, -x, -1.0, -x}, {-x, -x, -1.0, x}, {-x, -x, 1.0, -x}, {-x, -x, 1.0, x}, {-x, x, -1.0, -x}, {-x, x, -1.0, x}, {-x, x, 1.0, -x}, {-x, x, 1.0, x}, {x, -x, -1.0, -x}, {x, -x, -1.0, x}, {x, -x, 1.0, -x}, {x, -x, 1.0, x}, {x, x, -1.0, -x}, {x, x, -1.0, x}, {x, x, 1.0, -x}, {x, x, 1.0, x}, {-x, -x, -x, -1.0}, {-x, -x, -x, 1.0}, {-x, -x, x, -1.0}, {-x, -x, x, 1.0}, {-x, x, -x, -1.0}, {-x, x, -x, 1.0}, {-x, x, x, -1.0}, {-x, x, x, 1.0}, {x, -x, -x, -1.0}, {x, -x, -x, 1.0}, {x, -x, x, -1.0}, {x, -x, x, 1.0}, {x, x, -x, -1.0}, {x, x, -x, 1.0}, {x, x, x, -1.0}, {x, x, x, 1.0} }; quadruple[] vertices = new quadruple[vertices0.length]; for(int i = 0; i < vertices0.length; ++i){ vertices[i] = array2quadruple(vertices0[i]); } // edges ----------------------------------------------------------------------- int[][] edges = { {0, 8}, {0, 16}, {0, 32}, {0, 48}, {1, 9}, {1, 17}, {1, 33}, {1, 49}, {2, 10}, {2, 18}, {2, 34}, {2, 50}, {3, 11}, {3, 19}, {3, 35}, {3, 51}, {4, 12}, {4, 20}, {4, 36}, {4, 52}, {5, 13}, {5, 21}, {5, 37}, {5, 53}, {6, 14}, {6, 22}, {6, 38}, {6, 54}, {7, 15}, {7, 23}, {7, 39}, {7, 55}, {8, 24}, {8, 40}, {8, 56}, {9, 25}, {9, 41}, {9, 57}, {10, 26}, {10, 42}, {10, 58}, {11, 27}, {11, 43}, {11, 59}, {12, 28}, {12, 44}, {12, 60}, {13, 29}, {13, 45}, {13, 61}, {14, 30}, {14, 46}, {14, 62}, {15, 31}, {15, 47}, {15, 63}, {16, 20}, {16, 32}, {16, 48}, {17, 21}, {17, 33}, {17, 49}, {18, 22}, {18, 34}, {18, 50}, {19, 23}, {19, 35}, {19, 51}, {20, 36}, {20, 52}, {21, 37}, {21, 53}, {22, 38}, {22, 54}, {23, 39}, {23, 55}, {24, 28}, {24, 40}, {24, 56}, {25, 29}, {25, 41}, {25, 57}, {26, 30}, {26, 42}, {26, 58}, {27, 31}, {27, 43}, {27, 59}, {28, 44}, {28, 60}, {29, 45}, {29, 61}, {30, 46}, {30, 62}, {31, 47}, {31, 63}, {32, 34}, {32, 48}, {33, 35}, {33, 49}, {34, 50}, {35, 51}, {36, 38}, {36, 52}, {37, 39}, {37, 53}, {38, 54}, {39, 55}, {40, 42}, {40, 56}, {41, 43}, {41, 57}, {42, 58}, {43, 59}, {44, 46}, {44, 60}, {45, 47}, {45, 61}, {46, 62}, {47, 63}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63} }; // tetrahedra ------------------------------------------------------------------ int[][] tetrahedra = { {0, 16, 32, 48}, {11, 27, 43, 59}, {12, 28, 44, 60}, {8, 24, 40, 56}, {9, 25, 41, 57}, {15, 31, 47, 63}, {13, 29, 45, 61}, {14, 30, 46, 62}, {10, 26, 42, 58}, {3, 19, 35, 51}, {2, 18, 34, 50}, {1, 17, 33, 49}, {4, 20, 36, 52}, {5, 21, 37, 53}, {6, 22, 38, 54}, {7, 23, 39, 55} }; // rotation in 4D space (right-isoclinic) -------------------------------------- quadruple rotate4d(real alpha, real beta, real xi, quadruple vec){ real a = cos(xi); real b = sin(alpha)*cos(beta)*sin(xi); real c = sin(alpha)*sin(beta)*sin(xi); real d = cos(alpha)*sin(xi); real p = vec.x; real q = vec.y; real r = vec.z; real s = vec.t; quadruple out; out.x = a*p - b*q - c*r - d*s; out.y = a*q + b*p + c*s - d*r; out.z = a*r - b*s + c*p + d*q; out.t = a*s + b*r - c*q + d*p; return out; } // stereographic projection ---------------------------------------------------- triple stereog(quadruple A, real r){ return (A.x, A.y, A.z) / (r - A.t); } // stereographic path ---------------------------------------------------------- path3 stereoPath(quadruple A, quadruple B, real r, int n){ path3 out; for(int i = 0; i <= n; ++i){ real t = i/n; quadruple M; real x = (1-t)*A.x + t*B.x; real y = (1-t)*A.y + t*B.y; real z = (1-t)*A.z + t*B.z; real t = (1-t)*A.t + t*B.t; real lg = sqrt(x*x + y*y + z*z + t*t) / r; M.x = x / lg; M.y = y / lg; M.z = z / lg; M.t = t / lg; out = out .. stereog(M, r); } return out; } // section transformation ------------------------------------------------------ transform T(path3 p3, real t, int n){ triple M = relpoint(p3, t/(n/4)); return scale(length(M)/15); } // stereographic subdivision (to fill the tetrahedra) -------------------------- quadruple midpoint4(quadruple A, quadruple B, real r){ quadruple M; real x = (A.x + B.x)/2; real y = (A.y + B.y)/2; real z = (A.z + B.z)/2; real t = (A.t + B.t)/2; real lg = sqrt(x*x + y*y + z*z + t*t) / r; M.x = x / lg; M.y = y / lg; M.z = z / lg; M.t = t / lg; return(M); } quadruple[][] subdiv0(quadruple A, quadruple B, quadruple C, real r){ quadruple m01 = midpoint4(A, B, r); quadruple m02 = midpoint4(A, C, r); quadruple m12 = midpoint4(B, C, r); return new quadruple[][] { {A, m01, m02}, {B, m12, m01}, {C, m02, m12}, {m01, m12, m02} }; } quadruple[][] subdiv(int n, quadruple A, quadruple B, quadruple C, real r){ if(n == 1){ return subdiv0(A, B, C, r); } quadruple[][] triangles = subdiv(n-1, A, B, C, r); quadruple[][] out = new quadruple[0][3]; for(int i = 0; i < 4^(n-1); ++i){ quadruple[] trgl = triangles[i]; out.append(subdiv0(trgl[0], trgl[1], trgl[2], r)); } return out; } // mesh maker ------------------------------------------------------------------ struct Mesh { triple[] vertices; int[][] indices; } Mesh stereoTriangle(int n, quadruple A, quadruple B, quadruple C, real r){ quadruple[][] triangles = subdiv(n, A, B, C, r); triple[] vertices; int[][] indices; int faceIndex = 0; for(int i = 0; i < triangles.length; ++i){ quadruple[] triangle = triangles[i]; vertices.push(stereog(triangle[0], r)); vertices.push(stereog(triangle[1], r)); vertices.push(stereog(triangle[2], r)); int[] x = {faceIndex, faceIndex+1, faceIndex+2}; indices.push(x); faceIndex += 3; } Mesh out; out.vertices = vertices; out.indices = indices; return out; } // "bounding box" (to clip the animation) -------------------------------------- path3 boundingbox = scale(0.5,1,1)*circle(c=O, r=4, normal=Z); // plot ------------------------------------------------------------------------ int n = 75; int depth = 6; real alpha = 0, beta = 0; for(int f = 0; f < 180; ++f){ // rotation angle real xi = 2*f*pi/180; // rotated vertices quadruple[] vs = new quadruple[vertices.length]; for(int i = 0; i < vertices.length; ++i){ vs[i] = rotate4d(alpha, beta, xi, vertices[i]); } // new picture picture pic; // draw boundingbox draw(pic, boundingbox, rgb("363940ff")+opacity(0)); // draw edges for(int k = 0; k < edges.length; ++k){ quadruple A = vs[edges[k][0]]; quadruple B = vs[edges[k][1]]; path3 p3 = stereoPath(A, B, r, n); transform S(real t){ return T(p3, t, n); } draw(pic, tube(p3, unitcircle, S), rgb(139, 0, 139), render(compression=Low, merge=true)); } // draw vertices for(int i = 0; i < vertices.length; ++i){ triple Asg = stereog(vs[i], r); draw(pic, shift(Asg)*scale3(length(Asg)/10)*unitsphere, purple); } // draw tetrahedra for(int i = 0; i < tetrahedra.length; ++i){ int[] t = tetrahedra[i]; Mesh mesh = stereoTriangle(depth, vs[t[0]], vs[t[1]], vs[t[2]], r); draw(pic, mesh.vertices, mesh.indices, m = red); Mesh mesh = stereoTriangle(depth, vs[t[0]], vs[t[1]], vs[t[3]], r); draw(pic, mesh.vertices, mesh.indices, m = red); Mesh mesh = stereoTriangle(depth, vs[t[0]], vs[t[2]], vs[t[3]], r); draw(pic, mesh.vertices, mesh.indices, m = red); Mesh mesh = stereoTriangle(depth, vs[t[1]], vs[t[2]], vs[t[3]], r); draw(pic, mesh.vertices, mesh.indices, m = red); } // add picture and save add(pic); shipout(files[f], bbox(rgb("363940ff"), FillDraw(rgb("363940ff")))); erase(); }
Drawing with POV-Ray
#version 3.7; global_settings { assumed_gamma 1 } #include "colors.inc" #include "textures.inc" /* camera */ camera { location <-11, 7,-32> look_at 0 angle 45 } // sun ------------------------------------------------------------------------- light_source {< 1000,3000,-6000> color rgb<1,1,1>*0.9} // sun light_source {<-11, 7,-32> color rgb<0.9,0.9,1>*0.1 shadowless} // flash // sky ------------------------------------------------------------------------- plane{<0,1,0>,1 hollow texture{ pigment{ bozo turbulence 1.3 color_map { [0.00 rgb <0.24, 0.32, 1.0>*0.6] [0.75 rgb <0.24, 0.32, 1.0>*0.6] [0.83 rgb <1,1,1>] [0.95 rgb <0.25,0.25,0.25>] [1.0 rgb <0.5,0.5,0.5>]} scale<1,1,1>*2.5 translate< 0,0,3> } finish {ambient 1 diffuse 0} } scale 10000} // fog on the ground ----------------------------------------------------------- fog { fog_type 2 distance 50 color Gray10 fog_offset 0.1 fog_alt 1.5 turbulence 1.8 } // ground ---------------------------------------------------------------------- plane { <0,1,0>, 0 texture { pigment { color rgb <0.95,0.9,0.73>*0.35 } normal { bumps 2 scale <0.25,0.25,0.25>*0.5 turbulence 0.5 } finish { phong 0.1 } } } /* vertices */ #declare sqr2p1 = sqrt(2) + 1; #declare v0 = < -1.0 , -sqr2p1 , -sqr2p1 , -sqr2p1 >; #declare v1 = < -1.0 , -sqr2p1 , -sqr2p1 , sqr2p1 >; #declare v2 = < -1.0 , -sqr2p1 , sqr2p1 , -sqr2p1 >; #declare v3 = < -1.0 , -sqr2p1 , sqr2p1 , sqr2p1 >; #declare v4 = < -1.0 , sqr2p1 , -sqr2p1 , -sqr2p1 >; #declare v5 = < -1.0 , sqr2p1 , -sqr2p1 , sqr2p1 >; #declare v6 = < -1.0 , sqr2p1 , sqr2p1 , -sqr2p1 >; #declare v7 = < -1.0 , sqr2p1 , sqr2p1 , sqr2p1 >; #declare v8 = < 1.0 , -sqr2p1 , -sqr2p1 , -sqr2p1 >; #declare v9 = < 1.0 , -sqr2p1 , -sqr2p1 , sqr2p1 >; #declare v10 = < 1.0 , -sqr2p1 , sqr2p1 , -sqr2p1 >; #declare v11 = < 1.0 , -sqr2p1 , sqr2p1 , sqr2p1 >; #declare v12 = < 1.0 , sqr2p1 , -sqr2p1 , -sqr2p1 >; #declare v13 = < 1.0 , sqr2p1 , -sqr2p1 , sqr2p1 >; #declare v14 = < 1.0 , sqr2p1 , sqr2p1 , -sqr2p1 >; #declare v15 = < 1.0 , sqr2p1 , sqr2p1 , sqr2p1 >; #declare v16 = < -sqr2p1 , -1.0 , -sqr2p1 , -sqr2p1 >; #declare v17 = < -sqr2p1 , -1.0 , -sqr2p1 , sqr2p1 >; #declare v18 = < -sqr2p1 , -1.0 , sqr2p1 , -sqr2p1 >; #declare v19 = < -sqr2p1 , -1.0 , sqr2p1 , sqr2p1 >; #declare v20 = < -sqr2p1 , 1.0 , -sqr2p1 , -sqr2p1 >; #declare v21 = < -sqr2p1 , 1.0 , -sqr2p1 , sqr2p1 >; #declare v22 = < -sqr2p1 , 1.0 , sqr2p1 , -sqr2p1 >; #declare v23 = < -sqr2p1 , 1.0 , sqr2p1 , sqr2p1 >; #declare v24 = < sqr2p1 , -1.0 , -sqr2p1 , -sqr2p1 >; #declare v25 = < sqr2p1 , -1.0 , -sqr2p1 , sqr2p1 >; #declare v26 = < sqr2p1 , -1.0 , sqr2p1 , -sqr2p1 >; #declare v27 = < sqr2p1 , -1.0 , sqr2p1 , sqr2p1 >; #declare v28 = < sqr2p1 , 1.0 , -sqr2p1 , -sqr2p1 >; #declare v29 = < sqr2p1 , 1.0 , -sqr2p1 , sqr2p1 >; #declare v30 = < sqr2p1 , 1.0 , sqr2p1 , -sqr2p1 >; #declare v31 = < sqr2p1 , 1.0 , sqr2p1 , sqr2p1 >; #declare v32 = < -sqr2p1 , -sqr2p1 , -1.0 , -sqr2p1 >; #declare v33 = < -sqr2p1 , -sqr2p1 , -1.0 , sqr2p1 >; #declare v34 = < -sqr2p1 , -sqr2p1 , 1.0 , -sqr2p1 >; #declare v35 = < -sqr2p1 , -sqr2p1 , 1.0 , sqr2p1 >; #declare v36 = < -sqr2p1 , sqr2p1 , -1.0 , -sqr2p1 >; #declare v37 = < -sqr2p1 , sqr2p1 , -1.0 , sqr2p1 >; #declare v38 = < -sqr2p1 , sqr2p1 , 1.0 , -sqr2p1 >; #declare v39 = < -sqr2p1 , sqr2p1 , 1.0 , sqr2p1 >; #declare v40 = < sqr2p1 , -sqr2p1 , -1.0 , -sqr2p1 >; #declare v41 = < sqr2p1 , -sqr2p1 , -1.0 , sqr2p1 >; #declare v42 = < sqr2p1 , -sqr2p1 , 1.0 , -sqr2p1 >; #declare v43 = < sqr2p1 , -sqr2p1 , 1.0 , sqr2p1 >; #declare v44 = < sqr2p1 , sqr2p1 , -1.0 , -sqr2p1 >; #declare v45 = < sqr2p1 , sqr2p1 , -1.0 , sqr2p1 >; #declare v46 = < sqr2p1 , sqr2p1 , 1.0 , -sqr2p1 >; #declare v47 = < sqr2p1 , sqr2p1 , 1.0 , sqr2p1 >; #declare v48 = < -sqr2p1 , -sqr2p1 , -sqr2p1 , -1.0 >; #declare v49 = < -sqr2p1 , -sqr2p1 , -sqr2p1 , 1.0 >; #declare v50 = < -sqr2p1 , -sqr2p1 , sqr2p1 , -1.0 >; #declare v51 = < -sqr2p1 , -sqr2p1 , sqr2p1 , 1.0 >; #declare v52 = < -sqr2p1 , sqr2p1 , -sqr2p1 , -1.0 >; #declare v53 = < -sqr2p1 , sqr2p1 , -sqr2p1 , 1.0 >; #declare v54 = < -sqr2p1 , sqr2p1 , sqr2p1 , -1.0 >; #declare v55 = < -sqr2p1 , sqr2p1 , sqr2p1 , 1.0 >; #declare v56 = < sqr2p1 , -sqr2p1 , -sqr2p1 , -1.0 >; #declare v57 = < sqr2p1 , -sqr2p1 , -sqr2p1 , 1.0 >; #declare v58 = < sqr2p1 , -sqr2p1 , sqr2p1 , -1.0 >; #declare v59 = < sqr2p1 , -sqr2p1 , sqr2p1 , 1.0 >; #declare v60 = < sqr2p1 , sqr2p1 , -sqr2p1 , -1.0 >; #declare v61 = < sqr2p1 , sqr2p1 , -sqr2p1 , 1.0 >; #declare v62 = < sqr2p1 , sqr2p1 , sqr2p1 , -1.0 >; #declare v63 = < sqr2p1 , sqr2p1 , sqr2p1 , 1.0 >; #declare vertices = array[64] {v0,v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15, v16,v17,v18,v19,v20,v21,v22,v23,v24,v25,v26,v27,v28,v29,v30,v31, v32,v33,v34,v35,v36,v37,v38,v39,v40,v41,v42,v43,v44,v45,v46,v47, v48,v49,v50,v51,v52,v53,v54,v55,v56,v57,v58,v59,v60,v61,v62,v63}; /* edges */ #declare edges = array[128][2] { { 0 , 8 } , { 0 , 16 } , { 0 , 32 } , { 0 , 48 } , { 1 , 9 } , { 1 , 17 } , { 1 , 33 } , { 1 , 49 } , { 2 , 10 } , { 2 , 18 } , { 2 , 34 } , { 2 , 50 } , { 3 , 11 } , { 3 , 19 } , { 3 , 35 } , { 3 , 51 } , { 4 , 12 } , { 4 , 20 } , { 4 , 36 } , { 4 , 52 } , { 5 , 13 } , { 5 , 21 } , { 5 , 37 } , { 5 , 53 } , { 6 , 14 } , { 6 , 22 } , { 6 , 38 } , { 6 , 54 } , { 7 , 15 } , { 7 , 23 } , { 7 , 39 } , { 7 , 55 } , { 8 , 24 } , { 8 , 40 } , { 8 , 56 } , { 9 , 25 } , { 9 , 41 } , { 9 , 57 } , { 10 , 26 } , { 10 , 42 } , { 10 , 58 } , { 11 , 27 } , { 11 , 43 } , { 11 , 59 } , { 12 , 28 } , { 12 , 44 } , { 12 , 60 } , { 13 , 29 } , { 13 , 45 } , { 13 , 61 } , { 14 , 30 } , { 14 , 46 } , { 14 , 62 } , { 15 , 31 } , { 15 , 47 } , { 15 , 63 } , { 16 , 20 } , { 16 , 32 } , { 16 , 48 } , { 17 , 21 } , { 17 , 33 } , { 17 , 49 } , { 18 , 22 } , { 18 , 34 } , { 18 , 50 } , { 19 , 23 } , { 19 , 35 } , { 19 , 51 } , { 20 , 36 } , { 20 , 52 } , { 21 , 37 } , { 21 , 53 } , { 22 , 38 } , { 22 , 54 } , { 23 , 39 } , { 23 , 55 } , { 24 , 28 } , { 24 , 40 } , { 24 , 56 } , { 25 , 29 } , { 25 , 41 } , { 25 , 57 } , { 26 , 30 } , { 26 , 42 } , { 26 , 58 } , { 27 , 31 } , { 27 , 43 } , { 27 , 59 } , { 28 , 44 } , { 28 , 60 } , { 29 , 45 } , { 29 , 61 } , { 30 , 46 } , { 30 , 62 } , { 31 , 47 } , { 31 , 63 } , { 32 , 34 } , { 32 , 48 } , { 33 , 35 } , { 33 , 49 } , { 34 , 50 } , { 35 , 51 } , { 36 , 38 } , { 36 , 52 } , { 37 , 39 } , { 37 , 53 } , { 38 , 54 } , { 39 , 55 } , { 40 , 42 } , { 40 , 56 } , { 41 , 43 } , { 41 , 57 } , { 42 , 58 } , { 43 , 59 } , { 44 , 46 } , { 44 , 60 } , { 45 , 47 } , { 45 , 61 } , { 46 , 62 } , { 47 , 63 } , { 48 , 49 } , { 50 , 51 } , { 52 , 53 } , { 54 , 55 } , { 56 , 57 } , { 58 , 59 } , { 60 , 61 } , { 62 , 63 } }; /* tetrahedra */ #declare tetrahedra = array[16][4] { { 0 , 16 , 32 , 48 } , { 11 , 27 , 43 , 59 } , { 12 , 28 , 44 , 60 } , { 8 , 24 , 40 , 56 } , { 9 , 25 , 41 , 57 } , { 15 , 31 , 47 , 63 } , { 13 , 29 , 45 , 61 } , { 14 , 30 , 46 , 62 } , { 10 , 26 , 42 , 58 } , { 3 , 19 , 35 , 51 } , { 2 , 18 , 34 , 50 } , { 1 , 17 , 33 , 49 } , { 4 , 20 , 36 , 52 } , { 5 , 21 , 37 , 53 } , { 6 , 22 , 38 , 54 } , { 7 , 23 , 39 , 55 } }; #declare faces = array[64][3]; #for(i, 0, 15) #declare faces[4*i][0] = tetrahedra[i][0]; #declare faces[4*i][1] = tetrahedra[i][1]; #declare faces[4*i][2] = tetrahedra[i][2]; #declare faces[4*i+1][0] = tetrahedra[i][0]; #declare faces[4*i+1][1] = tetrahedra[i][1]; #declare faces[4*i+1][2] = tetrahedra[i][3]; #declare faces[4*i+2][0] = tetrahedra[i][0]; #declare faces[4*i+2][1] = tetrahedra[i][2]; #declare faces[4*i+2][2] = tetrahedra[i][3]; #declare faces[4*i+3][0] = tetrahedra[i][1]; #declare faces[4*i+3][1] = tetrahedra[i][2]; #declare faces[4*i+3][2] = tetrahedra[i][3]; #end /* rotation in 4D space */ #macro rotate4d(theta, phi, xi, vec) #local a = cos(xi); #local b = sin(theta)*cos(phi)*sin(xi); #local c = sin(theta)*sin(phi)*sin(xi); #local d = cos(theta)*sin(xi); #local p = vec.x; #local q = vec.y; #local r = vec.z; #local s = vec.t; < a*p - b*q - c*r - d*s , a*q + b*p + c*s - d*r , a*r - b*s + c*p + d*q , a*s + b*r - c*q + d*p > #end /* stereographic projection */ #macro StereographicProjection(q, r) <q.x,q.y,q.z>/(r-q.t) #end /* rotated and projected vertices */ #macro ProjectedVertices(theta, phi, xi, r) #local out = array[64]; #for(i, 0, 63) #local out[i] = StereographicProjection( rotate4d(theta,phi,xi,vertices[i]), r ); #end out #end /* macro spherical segment */ #macro vlength4(P) sqrt(P.x*P.x + P.y*P.y + P.z*P.z + P.t*P.t) #end #macro sphericalSegment(P, Q, r, n) #local out = array[n+1]; #for(i, 0, n) #local pt = P + (i/n)*(Q-P); #local out[i] = r/vlength4(pt) * pt; #end out #end /* macro to draw an edge */ #macro Edge(verts, v1, v2, theta, phi, xi, r, Tex) #local P = verts[v1]; #local Q = verts[v2]; #local PQ = sphericalSegment(P, Q, r, 100); sphere_sweep { b_spline 101 #for(k,0,100) #local O = StereographicProjection(rotate4d(theta,phi,xi,PQ[k]), r); O log(1+vlength(O)/4)/2 #end texture { Tex } } #end /* stereographic subdivision (to fill the triangular faces) */ #macro midpoint4(A, B, r) #local xmid = (A.x + B.x)/2; #local ymid = (A.y + B.y)/2; #local zmid = (A.z + B.z)/2; #local tmid = (A.t + B.t)/2; #local lg = sqrt(xmid*xmid + ymid*ymid + zmid*zmid + tmid*tmid) / r; < xmid / lg, ymid / lg, zmid / lg, tmid / lg > #end #macro subdiv0(A, B, C, r) #local mAB = midpoint4(A, B, r); #local mAC = midpoint4(A, C, r); #local mBC = midpoint4(B, C, r); #local trgl1 = array[3] {A, mAB, mAC}; #local trgl2 = array[3] {B, mAB, mBC}; #local trgl3 = array[3] {C, mBC, mAC}; #local trgl4 = array[3] {mAB, mAC, mBC}; array[4] {trgl1, trgl2, trgl3, trgl4} #end #macro subdiv(A, B, C, r, depth) #if(depth=1) #local out = subdiv0(A, B, C, r); #else #local triangles = subdiv(A, B, C, r, depth-1); #local out = array[pow(4,depth)]; #for(i, 0, pow(4,depth-1)-1) #local trgl = triangles[i]; #local trgls = subdiv0(trgl[0], trgl[1], trgl[2], r); #local out[4*i] = trgls[0]; #local out[4*i+1] = trgls[1]; #local out[4*i+2] = trgls[2]; #local out[4*i+3] = trgls[3]; #end #end out #end /*-------------------------------------------*/ /*----- draw the polychoron ------*/ /*-------------------------------------------*/ #declare theta = pi/2; #declare phi = 0; #declare xi = 2*frame_number*pi/180; #declare r = sqrt(1+3*sqr2p1*sqr2p1); #declare depth = 5; #declare vs = ProjectedVertices(theta, phi, xi, r); #declare stereoTriangles = array[64]; #for(i, 0, 63) #local triangles4 = subdiv( vertices[faces[i][0]], vertices[faces[i][1]], vertices[faces[i][2]], r, depth); #declare stereoTriangles[i] = array[dimension_size(triangles4,1)][3]; #for(j, 0, dimension_size(triangles4,1)-1) #local trgl4 = triangles4[j]; #declare stereoTriangles[i][j][0] = StereographicProjection(rotate4d(theta, phi, xi, trgl4[0]), r); #declare stereoTriangles[i][j][1] = StereographicProjection(rotate4d(theta, phi, xi, trgl4[1]), r); #declare stereoTriangles[i][j][2] = StereographicProjection(rotate4d(theta, phi, xi, trgl4[2]), r); #end #end #declare edgeTexture = texture { pigment { color DarkPurple } finish { ambient .1 diffuse .9 reflection 0 specular 1 metallic } }; object { union { /* draw edges */ #for(i, 0, 127) Edge(vertices, edges[i][0], edges[i][1], theta, phi, xi, r, edgeTexture) #end /* draw vertices */ #for(i,0,63) sphere { vs[i], vlength(vs[i])/15 texture { edgeTexture } } #end /* fill triangles */ mesh { #for(i, 0, 63) #local trgl = stereoTriangles[i]; #for(j, 0, dimension_size(trgl,1)-1) triangle { trgl[j][0], trgl[j][1], trgl[j][2] } #end #end texture { pigment { Red } finish { ambient 0.5 reflection 0 brilliance 4 } } } } scale 0.5 translate <-8, 6, -25> }
To leave a comment for the author, please follow the link and comment on their blog: Saturn Elephant.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.