[This article was first published on Macroeconomic Observatory - R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Gross domestic product |
Industrial production |
Consumer prices |
Unemployment rate, % |
|||||
---|---|---|---|---|---|---|---|---|
latest | quarter* | 2019† | 2020† | latest | latest | 2019† | latest | |
United States | +2.1 Q3 | +2.1 | +2.4 | +2.1 | -1.1 Oct | +1.8 Oct | +1.8 | +3.6 Oct |
China | +0.1 Q3 | +0.2 | +6.1 | +5.8 | +5.4 Nov‡ | +3.8 Oct | +2.3 | +3.6 Q3 |
Japan | +1.4 Q3 | +0.2 | +0.9 | +0.5 | -6.0 Oct | +0.2 Oct | +1.0 | +2.4 Oct |
Britain | +1.0 Q3 | +1.2 | +1.2 | +1.4 | -1.4 Sep | +1.5 Oct | +1.8 | +3.8 Aug |
Canada | +1.7 Q3 | +1.3 | +1.5 | +1.8 | -1.8 Sep | +1.9 Oct | +2.0 | +5.5 Oct |
Euro area | +1.2 Q3 | +0.9 | +1.2 | +1.4 | -1.9 Sep | +0.7 Oct | +1.2 | +7.5 Oct |
Austria | +1.5 Q3 | +0.5 | +1.6 | +1.7 | +0.3 Aug | +1.1 Oct | +1.5 | +4.6 Oct |
Belgium | +1.6 Q3 | +1.7 | +1.2 | +1.3 | +6.0 Sep | +0.4 Nov | +1.5 | +5.6 Oct |
France | +1.4 Q3 | +1.1 | +1.2 | +1.3 | +0.1 Sep | +0.8 Oct | +1.2 | +8.5 Oct |
Germany | +0.5 Q3 | +0.3 | +0.5 | +1.2 | -5.1 Sep | +1.1 Oct | +1.5 | +3.1 Oct |
Greece | +1.9 Q2 | +3.4 | +2.0 | +2.2 | +0.8 Sep | -0.7 Oct | +0.6 | +16.7 Aug |
Italy | +0.3 Q3 | +0.2 | +0.0 | +0.5 | -2.1 Sep | +0.2 Oct | +0.7 | +9.7 Oct |
Netherlands | +1.8 Q3 | +1.8 | +1.8 | +1.6 | +0.3 Sep | +2.7 Oct | +2.5 | +3.5 Oct |
Spain | +2.0 Q3 | +1.7 | +2.2 | +1.8 | +0.8 Sep | +0.1 Oct | +0.7 | +14.2 Oct |
Czech Republic | +2.5 Q3 | +1.5 | +2.5 | +2.6 | +0.1 Aug | +2.7 Oct | +2.6 | +2.2 Oct |
Denmark | +2.2 Q3 | +1.3 | +1.7 | +1.9 | +4.2 Sep | +0.6 Oct | +1.3 | +5.3 Oct |
Norway | +0.6 Q3 | +0.1 | +1.9 | +2.4 | -8.0 Sep | +1.8 Oct | +2.3 | +3.9 Sep |
Poland | +4.0 Q3 | +5.3 | +4.0 | +3.1 | +3.5 Oct | +2.5 Oct | +2.4 | +3.2 Oct |
Russia | +0.8 Q2 | +0.6 | +1.1 | +1.9 | +2.6 Sep | +3.8 Oct | +4.7 | +4.6 Q3 |
Sweden | +1.7 Q3 | +1.1 | +0.9 | +1.5 | +1.6 Sep | +1.6 Oct | +1.7 | +6.6 Oct |
Switzerland | +1.0 Q3 | +1.6 | +0.8 | +1.3 | +5.4 Q4‡ | -0.3 Oct | +0.6 | +2.4 May |
Turkey | +0.5 Q3 | +1.7 | +0.2 | +3.0 | +2.8 Sep | +8.6 Oct | +15.7 | +14.2 Aug |
Australia | +1.7 Q3 | +1.8 | +1.7 | +2.3 | +2.7 Q3 | +1.7 Q3 | +1.6 | +5.3 Oct |
Hong Kong | +0.5 Q2 | -1.7 | +0.3 | +1.5 | +0.4 Q2 | +3.3 Sep | +3.0 | +2.8 Q1 |
India | +4.7 Q3 | +4.3 | +6.1 | +7.0 | +2.6 Dec‡ | +7.6 Oct | +3.4 | +2.6 Year‡ |
Indonesia | +5.1 Q3 | +5.0 | +5.0 | +5.1 | -3.7 Apr | +3.0 Nov | +3.2 | +4.6 Q3‡ |
Malaysia | +4.7 Q4‡ | +14.7 | +4.5 | +4.4 | +3.1 Mar | +1.5 Aug | +1.0 | +3.3 Q1 |
Pakistan | +5.5 Year‡ | NA | +3.3 | +2.4 | -7.0 Aug | +8.2 Feb | +7.3 | +4.4 Q2‡ |
Philippines | +6.1 Q4‡ | +6.4 | +5.7 | +6.2 | -8.2 Jul | +3.3 Mar | +2.5 | +2.2 Q4‡ |
Singapore | +3.9 Q2‡ | +7.8 | +0.5 | +1.0 | +0.1 Sep | +0.4 Oct | +0.7 | +3.0 Q1 |
South Korea | +2.0 Q3 | +1.6 | +2.0 | +2.2 | -2.6 Oct | -0.4 Sep | +0.5 | +3.5 Oct |
Taiwan | +2.9 Q3 | NA | +2.0 | +1.9 | NA | +0.4 Q3 | +0.8 | +3.7 Q2 |
Thailand | +2.3 Q2 | +2.4 | +2.9 | +3.0 | -1.2 Q1 | +0.1 Oct | +0.9 | +0.7 Q4‡ |
Argentina | -0.0 Q2 | -0.0 | -3.1 | -1.3 | +4.4 Q3§ | +50.5 Oct | +54.4 | +9.8 Q1 |
Brazil | +1.2 Q3 | +2.5 | +0.9 | +2.0 | +0.6 Sep | +2.5 Oct | +3.8 | +8.0 Nov |
Chile | +2.8 Q3 | +3.0 | +2.5 | +3.0 | -3.7 Oct | +2.7 Oct | +2.2 | +6.9 Aug |
Colombia | +3.3 Q3 | +2.3 | +3.4 | +3.6 | -1.1 Dec‡ | +3.9 Oct | +3.6 | +10.7 Sep |
Mexico | -0.2 Q3 | +0.1 | +0.4 | +1.3 | -2.9 Jun | +3.0 Oct | +3.8 | +3.6 Oct |
Peru | +2.1 Q1§ | -16.9 | +2.6 | +3.6 | +20.3 Apr‡ | +2.2 Mar | +2.2 | +6.2 Q2 |
Egypt | +5.3 Year‡ | NA | +5.5 | +5.9 | +6.2 Mar‡ | +15.7 Nov‡ | +13.9 | +11.8 Q4§ |
Israel | +3.3 Q3 | +4.1 | +3.1 | +3.1 | +4.4 Sep | +0.4 Oct | +1.0 | +3.7 Sep |
Saudi Arabia | +0.5 Q2 | -10.4 | +0.2 | +2.2 | +1.6 Q3§ | -0.3 Oct | -1.1 | +6.0 Year‡ |
South Africa | +1.0 Q2 | +3.1 | +0.7 | +1.1 | +1.3 Aug‡ | +3.7 Oct | +4.4 | +28.8 Q3 |
Source: DBnomics (Eurostat, ILO, IMF, OECD and national sources). Click on the figures in the `latest` columns to see the full time series. | ||||||||
* % change on previous quarter, annual rate † IMF estimation/forecast ‡ 2018 § 2017 |
The aim of this blog post is to reproduce part of the economic indicators table from ‘The Economist’ using only free tools. We take data directly from DBnomics. The DBnomics API can be accessed through R with the rdbnomics package. All the following code is written in R, thanks to the RCoreTeam (2016) and the RStudioTeam (2016). To update the table, just download the code here and re-run it.
if (!"pacman" %in% installed.packages()[,"Package"]) install.packages("pacman", repos='http://cran.r-project.org') pacman::p_load(tidyverse,rdbnomics,magrittr,zoo,lubridate,knitr,kableExtra,formattable) opts_chunk$set(fig.align="center", message=FALSE, warning=FALSE) currentyear <- year(Sys.Date()) lastyear <- currentyear-1 beforelastyear <- currentyear-2 CountryList <- c("United States","China","Japan","Britain","Canada", "Euro area","Austria","Belgium","France","Germany","Greece","Italy","Netherlands","Spain", "Czech Republic","Denmark","Norway","Poland","Russia","Sweden","Switzerland","Turkey", "Australia","Hong Kong","India","Indonesia","Malaysia","Pakistan","Philippines","Singapore","South Korea","Taiwan","Thailand", "Argentina","Brazil","Chile","Colombia","Mexico","Peru", "Egypt","Israel","Saudi Arabia","South Africa")
Download
gdp <- rdb("OECD","MEI",ids=".NAEXKP01.GPSA+GYSA.Q") hongkong_philippines_thailand_gdp <- rdb("IMF","IFS",mask="Q.HK+PH+TH.NGDP_R_PC_CP_A_SA_PT+NGDP_R_PC_PP_SA_PT") %>% rename(Country=`Reference Area`) %>% mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong", TRUE ~ Country), MEASURE=case_when(INDICATOR=="NGDP_R_PC_CP_A_SA_PT" ~ "GYSA", INDICATOR=="NGDP_R_PC_PP_SA_PT" ~ "GPSA")) malaysia_peru_saudi_singapore_gdp <- rdb("IMF","IFS",mask="Q.MY+PE+SA+SG.NGDP_R_PC_CP_A_PT+NGDP_R_PC_PP_PT") %>% rename(Country=`Reference Area`) %>% mutate(MEASURE=case_when(INDICATOR=="NGDP_R_PC_CP_A_PT" ~ "GYSA", INDICATOR=="NGDP_R_PC_PP_PT" ~ "GPSA")) taiwan_gdp <- rdb("BI/TABEL9_1/17.Q") %>% mutate(Country="Taiwan", MEASURE="GYSA") egypt_pakistan_gdp <- rdb("IMF","WEO",mask="EGY+PAK.NGDP_RPCH") %>% rename(Country=`WEO Country`) %>% mutate(MEASURE="GYSA") %>% filter(year(period)<currentyear) china_gdp_level <- rdb(ids="OECD/MEI/CHN.NAEXCP01.STSA.Q") gdp_qoq_china <- china_gdp_level %>% arrange(period) %>% mutate(value=value/lag(value)-1, MEASURE="GPSA") gdp_yoy_china <- china_gdp_level %>% arrange(period) %>% mutate(quarter=quarter(period)) %>% group_by(quarter) %>% mutate(value=value/lag(value)-1, MEASURE="GYSA") argentina_gdp_level <- rdb(ids="Eurostat/naidq_10_gdp/Q.SCA.KP_I10.B1GQ.AR") %>% rename(Country=`Geopolitical entity (reporting)`) gdp_qoq_argentina <- argentina_gdp_level %>% arrange(period) %>% mutate(value=value/lag(value)-1, MEASURE="GPSA") gdp_yoy_argentina <- argentina_gdp_level %>% arrange(period) %>% mutate(quarter=quarter(period)) %>% group_by(quarter) %>% mutate(value=value/lag(value)-1, MEASURE="GYSA") gdp <- bind_rows(gdp,hongkong_philippines_thailand_gdp,malaysia_peru_saudi_singapore_gdp,taiwan_gdp,egypt_pakistan_gdp,gdp_yoy_china,gdp_qoq_china,gdp_yoy_argentina,gdp_qoq_argentina) indprod <- rdb("OECD","MEI",ids=".PRINTO01.GYSA.M") australia_swiss_indprod <- rdb("OECD","MEI","AUS+CHE.PRINTO01.GYSA.Q") china_egypt_mexico_malaysia_indprod <- rdb("IMF","IFS",mask="M.CN+EG+MX+MY.AIP_PC_CP_A_PT") %>% rename(Country=`Reference Area`) indonesia_pakistan_peru_philippines_singapore_southafrica_indprod <- rdb("IMF","IFS",mask="M.ID+PK+PE+PH+SG+ZA.AIPMA_PC_CP_A_PT") %>% rename(Country=`Reference Area`) argentina_hongkong_saudiarabia_thailand_indprod <- rdb("IMF","IFS",mask="Q.AR+HK+SA+TH.AIPMA_PC_CP_A_PT") %>% rename(Country=`Reference Area`) %>% mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong", TRUE ~ Country)) indprod <- bind_rows(indprod,australia_swiss_indprod,china_egypt_mexico_malaysia_indprod,indonesia_pakistan_peru_philippines_singapore_southafrica_indprod,argentina_hongkong_saudiarabia_thailand_indprod) cpi <- rdb("OECD","MEI",ids=".CPALTT01.GY.M") australia_cpi <- rdb("OECD","MEI",ids="AUS.CPALTT01.GY.Q") taiwan_cpi <- rdb("BI/TABEL9_2/17.Q") %>% mutate(Country="Taiwan") other_cpi <- rdb("IMF","IFS",mask="M.EG+HK+MY+PE+PH+PK+SG+TH.PCPI_PC_CP_A_PT") %>% rename(Country=`Reference Area`) %>% mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong", TRUE ~ Country)) cpi <- bind_rows(cpi,australia_cpi,taiwan_cpi,other_cpi) unemp <- rdb("OECD","MEI",ids=".LRHUTTTT.STSA.M") swiss_unemp <- rdb("OECD","MEI",mask="CHE.LMUNRRTT.STSA.M") brazil_unemp <- rdb("OECD","MEI",mask="BRA.LRUNTTTT.STSA.M") southafrica_russia_unemp <- rdb("OECD","MEI",mask="ZAF+RUS.LRUNTTTT.STSA.Q") china_unemp <- rdb(ids="BUBA/BBXL3/Q.CN.N.UNEH.TOTAL0.NAT.URAR.RAT.I00") %>% mutate(Country="China") saudiarabia_unemp <- rdb(ids="ILO/UNE_DEAP_SEX_AGE_RT/SAU.BA_627.AGE_AGGREGATE_TOTAL.SEX_T.A") %>% rename(Country=`Reference area`) %>% filter(year(period)<currentyear) india_unemp <- rdb(ids="ILO/UNE_2EAP_NOC_RT/IND.XA_1976.A") %>% rename(Country=`Reference area`) %>% filter(year(period)<currentyear) indonesia_pakistan_unemp <- rdb("ILO","UNE_DEAP_SEX_AGE_EDU_RT",mask="IDN+PAK..AGE_AGGREGATE_TOTAL.EDU_AGGREGATE_TOTAL.SEX_T.Q") %>% rename(Country=`Reference area`) other_unemp <- rdb("ILO","UNE_DEA1_SEX_AGE_RT",mask="ARG+EGY+HKG+MYS+PER+PHL+SGP+THA+TWN..AGE_YTHADULT_YGE15.SEX_T.Q") %>% rename(Country=`Reference area`) %>% mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong", Country=="Taiwan, China" ~ "Taiwan", TRUE ~ Country)) unemp <- bind_rows(unemp,brazil_unemp,southafrica_russia_unemp,swiss_unemp,china_unemp,saudiarabia_unemp,india_unemp,indonesia_pakistan_unemp,other_unemp) forecast_gdp_cpi_ea <- rdb("IMF","WEOAGG",mask="163.NGDP_RPCH+PCPIPCH") %>% rename(`WEO Country`=`WEO Countries group`) forecast_gdp_cpi <- rdb("IMF","WEO",mask=".NGDP_RPCH+PCPIPCH") %>% bind_rows(forecast_gdp_cpi_ea) %>% transmute(Country=`WEO Country`, var=`WEO Subject`, value, period) %>% mutate(Country=str_trim(Country), var=str_trim(var)) %>% mutate(Country=case_when(Country=="United Kingdom" ~ "Britain", Country=="Hong Kong SAR" ~ "Hong Kong", Country=="Korea" ~ "South Korea", Country=="Taiwan Province of China" ~ "Taiwan", TRUE ~ Country), var=case_when(var=="Gross domestic product, constant prices - Percent change" ~ "GDP", var=="Inflation, average consumer prices - Percent change" ~ "CPI", TRUE ~ var)) forecast_gdp_cpi <- left_join(data.frame(Country=CountryList),forecast_gdp_cpi,by="Country")
Transform
gdp_yoy_latest_period <- gdp %>% filter(MEASURE=="GYSA") %>% filter(!is.na(value)) %>% group_by(Country) %>% summarise(period=max(period)) gdp_yoy_latest <- gdp %>% filter(MEASURE=="GYSA") %>% inner_join(gdp_yoy_latest_period) %>% mutate(var="GDP",measure="latest") gdp_qoq_latest_period <- gdp %>% filter(MEASURE=="GPSA") %>% filter(!is.na(value)) %>% group_by(Country) %>% summarise(period=max(period)) gdp_qoq_latest <- gdp %>% filter(MEASURE=="GPSA") %>% inner_join(gdp_qoq_latest_period) %>% mutate(value=((1+value/100)^4-1)*100, var="GDP", measure="quarter") gdp_2019_2020 <- forecast_gdp_cpi %>% filter(var=="GDP" & (period=="2019-01-01" | period=="2020-01-01")) %>% mutate(measure=as.character(year(period))) indprod_latest_period <- indprod %>% filter(!is.na(value)) %>% group_by(Country) %>% summarise(period=max(period)) indprod_latest <- indprod %>% inner_join(indprod_latest_period) %>% mutate(var="indprod",measure="latest") cpi_latest_period <- cpi %>% filter(!is.na(value)) %>% group_by(Country) %>% summarise(period=max(period)) cpi_latest <- cpi %>% inner_join(cpi_latest_period) %>% mutate(var="CPI",measure="latest") cpi_2019 <- forecast_gdp_cpi %>% filter(var=="CPI" & period=="2019-01-01") %>% mutate(measure="2019") unemp_latest_period <- unemp %>% filter(!is.na(value)) %>% group_by(Country) %>% summarise(period=max(period)) unemp_latest <- unemp %>% inner_join(unemp_latest_period) %>% mutate(var="unemp",measure="latest")
Merge
df_all <- bind_rows(gdp_yoy_latest,gdp_qoq_latest,gdp_2019_2020,indprod_latest,cpi_latest,cpi_2019,unemp_latest) %>% mutate(value=ifelse(value>=0, paste0("+",sprintf("%.1f",round(value,1))), sprintf("%.1f",round(value,1)))) %>% unite(measure,c(var,measure)) df_latest <- df_all %>% filter(measure %in% c("GDP_latest","indprod_latest","CPI_latest","unemp_latest")) %>% mutate(value=case_when(`@frequency`=="quarterly" ~ paste(value," Q",quarter(period),sep=""), `@frequency`=="monthly" ~ paste(value," ",month(period,label = TRUE, abbr = TRUE, locale = "en_US.utf8"),sep=""), `@frequency`=="annual" ~ paste(value," Year",sep=""), TRUE ~ value)) %>% mutate(value=text_spec(ifelse(year(period)==lastyear,paste0(value,footnote_marker_symbol(3)), ifelse(year(period)==beforelastyear,paste0(value,footnote_marker_symbol(4)),value)), link = paste("https://db.nomics.world",provider_code,dataset_code,series_code,sep = "/"), color = "#333333",escape = F,extra_css="text-decoration:none")) df_final <- df_all %>% filter(measure %in% c("GDP_quarter","GDP_2019","GDP_2020","CPI_2019")) %>% bind_rows(df_latest) %>% mutate(Country=case_when(Country=="United Kingdom" ~ "Britain", Country=="Euro area (19 countries)" ~ "Euro area", Country=="China (People's Republic of)" ~ "China", Country=="Korea" ~ "South Korea", TRUE ~ Country)) %>% select(Country,value,measure) %>% spread(measure,value) %>% select(Country,GDP_latest,GDP_quarter,GDP_2019,GDP_2020,indprod_latest,CPI_latest,CPI_2019,unemp_latest) df_final <- left_join(data.frame(Country=CountryList),df_final,by="Country")
Display
names(df_final)[1] <- "" names(df_final)[2] <- "latest" names(df_final)[3] <- paste0("quarter",footnote_marker_symbol(1)) names(df_final)[4] <- paste0("2019",footnote_marker_symbol(2)) names(df_final)[5] <- paste0("2020",footnote_marker_symbol(2)) names(df_final)[6] <- "latest" names(df_final)[7] <- "latest" names(df_final)[8] <- paste0("2019",footnote_marker_symbol(2)) names(df_final)[9] <- "latest" df_final %>% kable(row.names = F,escape = F,align = c("l",rep("c",8)),caption = "Economic data (% change on year ago)") %>% kable_styling(bootstrap_options = c("striped", "hover","responsive"), fixed_thead = T, _size = 13) %>% add_header_above(c(" " = 1, "Gross domestic product" = 4, "Industrial production " = 1, "Consumer prices"= 2, "Unemployment rate, %"=1)) %>% column_spec(1, bold = T) %>% row_spec(seq(1,nrow(df_final),by=2), background = "#D5E4EB") %>% row_spec(c(5,14,22,33,39),extra_css = "border-bottom: 1.2px solid") %>% footnote(general = "DBnomics (Eurostat, ILO, IMF, OECD and national sources). Click on the figures in the `latest` columns to see the full time series.", general_title = "Source: ", footnote_as_chunk = T, symbol = c("% change on previous quarter, annual rate ", "IMF estimation/forecast", paste0(lastyear),paste0(beforelastyear)))
Bibliography
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL: https://www.R-project.org. ↩
RStudio Team. RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA, 2016. URL: http://www.rstudio.com/. ↩
To leave a comment for the author, please follow the link and comment on their blog: Macroeconomic Observatory - R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.