Updates on RSpectra: new “center” and “scale” parameters for svds()
[This article was first published on R on Yixuan's Homepage, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Per the suggestion by @robmaz, RSpectra::svds() now has two new parameters center and scale, to support implicit centering and scaling of matrices in partial SVD. The minimum version for this new feature is RSpectra >= 0.16-0.
These two parameters are very useful for principal component analysis (PCA) based on the covariance or correlation matrix, without actually forming them. Below we simulate a random data matrix, and use both R’s built-in prcomp() and the svds() function in RSpectra to compute PCA.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
To leave a comment for the author, please follow the link and comment on their blog: R on Yixuan's Homepage.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.