Eigenvectors from Eigenvalues – a NumPy implementation
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I was intrigued by the recent splashy result showing how eigenvectors can be computed from eigenvalues alone. The finding was covered in Quanta magazine and the original paper is pretty easy to understand, even for a non-mathematician.
Being a non-mathematician myself, I tend to look for insights and understanding via computation, rather than strict proofs. What seems cool about the result to me is that you can compute the directions from simply the stretches (along with the stretches of the sub-matrices). It seems kind of magical (of course, it’s not ). To get a feel for it, I implemented the key identity in the paper in python and NumPy and confirmed that it gives the right answer for a random (real-valued, symmetric) matrix.
I posted the Jupyter Notebook here.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.