Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
A while back I wrote a post demonstrating how to bootstrap follow-up contrasts for repeated-measure ANOVAs for cases where you data violates some / any assumptions. Here is a demo of how to conduct the same bootstrap analysis, more simply (no need to make your data wide!)
1. Fit your repeated-measures model with lmer
library(lme4) data(obk.long, package = "afex") # data from the afex package fit_mixed <- lmer(value ~ treatment * gender * phase * hour + (1|id), data = obk.long)
Note that I assume here data is aggregated (one value per cell/subject), as it would be in a rmANOVA, as so it is sufficient to model only a random intercept.
2. Define the contrast(s) of interest
For this step we will be using emmeans
to get the estimates of the pairwise differences between the treatment groups within each phase of the study:
library(emmeans) # get the correct reference grid with the correct ultivariate levels! rg <- ref_grid(fit_mixed, mult.levs = rm_levels) rg ## 'emmGrid' object with variables: ## treatment = control, A, B ## gender = F, M ## phase = fup, post, pre ## hour = 1, 2, 3, 4, 5 # get the expected means: em_ <- emmeans(rg, ~ phase * treatment) ## NOTE: Results may be misleading due to involvement in interactions em_ ## phase treatment emmean SE df lower.CL upper.CL ## fup control 4.33 0.603 13.2 3.03 5.64 ## post control 4.08 0.603 13.2 2.78 5.39 ## pre control 4.25 0.603 13.2 2.95 5.55 ## fup A 7.25 0.661 13.2 5.82 8.68 ## post A 6.50 0.661 13.2 5.07 7.93 ## pre A 5.00 0.661 13.2 3.57 6.43 ## fup B 7.29 0.505 13.2 6.20 8.38 ## post B 6.62 0.505 13.2 5.54 7.71 ## pre B 4.17 0.505 13.2 3.08 5.26 ## ## Results are averaged over the levels of: gender, hour ## Degrees-of-freedom method: kenward-roger ## Confidence level used: 0.95 # run pairwise tests between the treatment groups within each phase c_ <- contrast(em_, "pairwise", by = 'phase') c_ ## phase = fup: ## contrast estimate SE df t.ratio p.value ## control - A -2.9167 0.895 13.2 -3.259 0.0157 ## control - B -2.9583 0.787 13.2 -3.760 0.0061 ## A - B -0.0417 0.832 13.2 -0.050 0.9986 ## ## phase = post: ## contrast estimate SE df t.ratio p.value ## control - A -2.4167 0.895 13.2 -2.700 0.0445 ## control - B -2.5417 0.787 13.2 -3.230 0.0166 ## A - B -0.1250 0.832 13.2 -0.150 0.9876 ## ## phase = pre: ## contrast estimate SE df t.ratio p.value ## control - A -0.7500 0.895 13.2 -0.838 0.6869 ## control - B 0.0833 0.787 13.2 0.106 0.9938 ## A - B 0.8333 0.832 13.2 1.002 0.5885 ## ## Results are averaged over the levels of: gender, hour ## Degrees-of-freedom method: kenward-roger ## P value adjustment: tukey method for comparing a family of 3 estimates # extract the estimates est_names <- c("fup: control - A", "fup: control - B", "fup: A - B", "post: control - A", "post: control - B", "post: A - B", "pre: control - A", "pre: control - B", "pre: A - B") est_values <- summary(c_)$estimate names(est_values) <- est_names est_values ## fup: control - A fup: control - B fup: A - B post: control - A ## -2.91666667 -2.95833333 -0.04166667 -2.41666667 ## post: control - B post: A - B pre: control - A pre: control - B ## -2.54166667 -0.12500000 -0.75000000 0.08333333 ## pre: A - B ## 0.83333333
3. Run the bootstrap
Now let’s wrap this all in a function that accepts the fitted model as an argument:
treatment_phase_contrasts <- function(mod){ rg <- ref_grid(mod, mult.levs = rm_levels) # get the expected means: em_ <- emmeans(rg, ~ phase * treatment) # run pairwise tests between the treatment groups within each phase c_ <- contrast(em_, "pairwise", by = 'phase') # extract the estimates est_names <- c("fup: control - A", "fup: control - B", "fup: A - B", "post: control - A", "post: control - B", "post: A - B", "pre: control - A", "pre: control - B", "pre: A - B") est_values <- summary(c_)$estimate names(est_values) <- est_names est_values } # test it treatment_phase_contrasts(fit_mixed) ## NOTE: Results may be misleading due to involvement in interactions ## fup: control - A fup: control - B fup: A - B post: control - A ## -2.91666667 -2.95833333 -0.04166667 -2.41666667 ## post: control - B post: A - B pre: control - A pre: control - B ## -2.54166667 -0.12500000 -0.75000000 0.08333333 ## pre: A - B ## 0.83333333
Finally, we will use lme4::bootMer
to get the bootstrapped estimates!
treatment_phase_results <- bootMer(fit_mixed, treatment_phase_contrasts, nsim = 50) # R = 599 at least ## NOTE: Results may be misleading due to involvement in interactions summary(treatment_phase_results) # original vs. bootstrapped estimate (bootMed) ## ## Number of bootstrap replications R = 50 ## original bootBias bootSE bootMed ## fup: control - A -2.916667 0.017263 0.77841 -2.801902 ## fup: control - B -2.958333 -0.017880 0.86119 -3.025705 ## fup: A - B -0.041667 -0.035143 0.98850 -0.066474 ## post: control - A -2.416667 0.031072 0.82654 -2.383370 ## post: control - B -2.541667 -0.024860 0.82351 -2.520263 ## post: A - B -0.125000 -0.055932 1.03670 -0.216929 ## pre: control - A -0.750000 -0.065397 0.73276 -0.851533 ## pre: control - B 0.083333 0.024664 0.78592 0.111930 ## pre: A - B 0.833333 0.090061 0.95015 0.994195 confint(treatment_phase_results, type = "perc") # does include zero? ## 2.5 % 97.5 % ## fup: control - A -5.062951 -1.2782764 ## fup: control - B -4.985715 -1.0325666 ## fup: A - B -2.348035 2.1660820 ## post: control - A -4.451445 -0.5162071 ## post: control - B -4.840519 -1.1705024 ## post: A - B -2.349137 2.3025369 ## pre: control - A -2.427992 0.8830127 ## pre: control - B -1.915388 1.7159931 ## pre: A - B -1.530049 2.7527436
Results indicate that the Control group is lower than both treatment groups in the post and fup (follow -up) phases.
If we wanted p-values, we could use this little function (based on this demo):
boot_pvalues <- function(x, side = c(0, -1, 1)) { # Based on: # https://blogs.sas.com/content/iml/2011/11/02/how-to-compute-p-values-for-a-bootstrap-distribution.html side <- side[1] x <- as.data.frame(x$t) ps <- sapply(x, function(.x) { s <- na.omit(.x) s0 <- 0 N <- length(s) if (side == 0) { min((1 + sum(s >= s0)) / (N + 1), (1 + sum(s <= s0)) / (N + 1)) * 2 } else if (side < 0) { (1 + sum(s <= s0)) / (N + 1) } else if (side > 0) { (1 + sum(s >= s0)) / (N + 1) } }) setNames(ps,colnames(x)) } boot_pvalues(treatment_phase_results) ## fup: control - A fup: control - B fup: A - B post: control - A ## 0.03921569 0.03921569 0.94117647 0.03921569 ## post: control - B post: A - B pre: control - A pre: control - B ## 0.03921569 0.74509804 0.23529412 0.94117647 ## pre: A - B ## 0.27450980
These p-values can then be passed to p.adjust()
for the p-value adjustment method of your choosing.
Summary
I’ve demonstrated (again!) how to run permutation tests on main effects / interactions, with follow-up analysis using the bootstrap method. Using this code as a basis for any analysis you might have in mind gives you all the flexibility of emmeans
, which supports many (many) models!
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.