Getting started with Tensorflow, Keras in Python and R
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The Pale Blue Dot
“From this distant vantage point, the Earth might not seem of any particular interest. But for us, it’s different. Consider again that dot. That’s here, that’s home, that’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every “superstar,” every “supreme leader,” every saint and sinner in the history of our species lived there—on the mote of dust suspended in a sunbeam.”
Carl Sagan
Tensorflow and Keras are Deep Learning frameworks that really simplify a lot of things to the user. If you are familiar with Machine Learning and Deep Learning concepts then Tensorflow and Keras are really a playground to realize your ideas. In this post I show how you can get started with Tensorflow in both Python and R
Tensorflow in Python
For tensorflow in Python, I found Google’s Colab an ideal environment for running your Deep Learning code. This is an Google’s research project where you can execute your code on GPUs, TPUs etc
Tensorflow in R (RStudio)
To execute tensorflow in R (RStudio) you need to install tensorflow and keras as shown below
In this post I show how to get started with Tensorflow and Keras in R.
# Install Tensorflow in RStudio #install_tensorflow() # Install Keras #install_packages("keras") library(tensorflow) libary(keras)
This post takes 3 different Machine Learning problems and uses the
Tensorflow/Keras framework to solve it
Note:
You can view the Google Colab notebook at Tensorflow in Python
The RMarkdown file has been published at RPubs and can be accessed
at Getting started with Tensorflow in R
Checkout my book ‘Deep Learning from first principles: Second Edition – In vectorized Python, R and Octave’. My book starts with the implementation of a simple 2-layer Neural Network and works its way to a generic L-Layer Deep Learning Network, with all the bells and whistles. The derivations have been discussed in detail. The code has been extensively commented and included in its entirety in the Appendix sections. My book is available on Amazon as paperback ($14.99) and in kindle version($9.99/Rs449).
1. Multivariate regression with Tensorflow – Python
This code performs multivariate regression using Tensorflow and keras on the advent of Parkinson disease through sound recordings see Parkinson Speech Dataset with Multiple Types of Sound Recordings Data Set . The clinician’s motorUPDRS score has to be predicted from the set of features
# Import tensorflow
import tensorflow as tf
from tensorflow import keras
#Get the data rom the UCI Machine Learning repository
dataset = keras.utils.get_file("parkinsons_updrs.data", "https://archive.ics.uci.edu/ml/machine-learning-databases/parkinsons/telemonitoring/parkinsons_updrs.data")
# Read the CSV file
import pandas as pd
parkinsons = pd.read_csv(dataset, na_values = "?", comment='\t',
sep=",", skipinitialspace=True)
print(parkinsons.shape)
print(parkinsons.columns)
#Check if there are any NAs in the rows
parkinsons.isna().sum()
# Drop the columns subject number as it is not relevant
parkinsons1=parkinsons.drop(['subject#'],axis=1)
# Create dummy variables for sex (M/F)
parkinsons2=pd.get_dummies(parkinsons1,columns=['sex'])
parkinsons2.head()
Out[4]
age test_time motor_UPDRS total_UPDRS Jitter(%) Jitter(Abs) Jitter:RAP Jitter:PPQ5 Jitter:DDP Shimmer Shimmer(dB) Shimmer:APQ3 Shimmer:APQ5 Shimmer:APQ11 Shimmer:DDA NHR HNR RPDE DFA PPE sex_0 sex_1
0 72 5.6431 28.199 34.398 0.00662 0.000034 0.00401 0.00317 0.01204 0.02565 0.230 0.01438 0.01309 0.01662 0.04314 0.014290 21.640 0.41888 0.54842 0.16006 1 0
1 72 12.6660 28.447 34.894 0.00300 0.000017 0.00132 0.00150 0.00395 0.02024 0.179 0.00994 0.01072 0.01689 0.02982 0.011112 27.183 0.43493 0.56477 0.10810 1 0
2 72 19.6810 28.695 35.389 0.00481 0.000025 0.00205 0.00208 0.00616 0.01675 0.181 0.00734 0.00844 0.01458 0.02202 0.020220 23.047 0.46222 0.54405 0.21014 1 0
3 72 25.6470 28.905 35.810 0.00528 0.000027 0.00191 0.00264 0.00573 0.02309 0.327 0.01106 0.01265 0.01963 0.03317 0.027837 24.445 0.48730 0.57794 0.33277 1 0
4 72 33.6420 29.187 36.375 0.00335 0.000020 0.00093 0.00130 0.00278 0.01703 0.176 0.00679 0.00929 0.01819 0.02036 0.011625 26.126 0.47188 0.56122 0.19361 1 0
# Create a training and test data set with 80%/20%
train_dataset = parkinsons2.sample(frac=0.8,random_state=0)
test_dataset = parkinsons2.drop(train_dataset.index)
# Select columns
train_dataset1= train_dataset[['age', 'test_time', 'Jitter(%)', 'Jitter(Abs)',
'Jitter:RAP', 'Jitter:PPQ5', 'Jitter:DDP', 'Shimmer', 'Shimmer(dB)',
'Shimmer:APQ3', 'Shimmer:APQ5', 'Shimmer:APQ11', 'Shimmer:DDA', 'NHR',
'HNR', 'RPDE', 'DFA', 'PPE', 'sex_0', 'sex_1']]
test_dataset1= test_dataset[['age','test_time', 'Jitter(%)', 'Jitter(Abs)',
'Jitter:RAP', 'Jitter:PPQ5', 'Jitter:DDP', 'Shimmer', 'Shimmer(dB)',
'Shimmer:APQ3', 'Shimmer:APQ5', 'Shimmer:APQ11', 'Shimmer:DDA', 'NHR',
'HNR', 'RPDE', 'DFA', 'PPE', 'sex_0', 'sex_1']]
# Generate the statistics of the columns for use in normalization of the data
train_stats = train_dataset1.describe()
train_stats = train_stats.transpose()
train_stats
age 4700.0 64.792766 8.870401 36.000000 58.000000 65.000000 72.000000 85.000000
test_time 4700.0 93.399490 53.630411 -4.262500 46.852250 93.405000 139.367500 215.490000
Jitter(%) 4700.0 0.006136 0.005612 0.000830 0.003560 0.004900 0.006770 0.099990
Jitter(Abs) 4700.0 0.000044 0.000036 0.000002 0.000022 0.000034 0.000053 0.000396
Jitter:RAP 4700.0 0.002969 0.003089 0.000330 0.001570 0.002235 0.003260 0.057540
Jitter:PPQ5 4700.0 0.003271 0.003760 0.000430 0.001810 0.002480 0.003460 0.069560
Jitter:DDP 4700.0 0.008908 0.009267 0.000980 0.004710 0.006705 0.009790 0.172630
Shimmer 4700.0 0.033992 0.025922 0.003060 0.019020 0.027385 0.039810 0.268630
Shimmer(dB) 4700.0 0.310487 0.231016 0.026000 0.175000 0.251000 0.363250 2.107000
Shimmer:APQ3 4700.0 0.017125 0.013275 0.001610 0.009190 0.013615 0.020562 0.162670
Shimmer:APQ5 4700.0 0.020151 0.016848 0.001940 0.010750 0.015785 0.023733 0.167020
Shimmer:APQ11 4700.0 0.027508 0.020270 0.002490 0.015630 0.022685 0.032713 0.275460
Shimmer:DDA 4700.0 0.051375 0.039826 0.004840 0.027567 0.040845 0.061683 0.488020
NHR 4700.0 0.032116 0.060206 0.000304 0.010827 0.018403 0.031452 0.748260
HNR 4700.0 21.704631 4.288853 1.659000 19.447750 21.973000 24.445250 37.187000
RPDE 4700.0 0.542549 0.100212 0.151020 0.471235 0.543490 0.614335 0.966080
DFA 4700.0 0.653015 0.070446 0.514040 0.596470 0.643285 0.710618 0.865600
PPE 4700.0 0.219559 0.091506 0.021983 0.156470 0.205340 0.264017 0.731730
sex_0 4700.0 0.681489 0.465948 0.000000 0.000000 1.000000 1.000000 1.000000
sex_1 4700.0 0.318511 0.465948 0.000000 0.000000 0.000000 1.000000 1.000000
# Create the target variable
train_labels = train_dataset.pop('motor_UPDRS')
test_labels = test_dataset.pop('motor_UPDRS')
# Normalize the data by subtracting the mean and dividing by the standard deviation
def normalize(x):
return (x - train_stats['mean']) / train_stats['std']
# Create normalized training and test data
normalized_train_data = normalize(train_dataset1)
normalized_test_data = normalize(test_dataset1)
# Create a Deep Learning model with keras
model = tf.keras.Sequential([
keras.layers.Dense(6, activation=tf.nn.relu, input_shape=[len(train_dataset1.keys())]),
keras.layers.Dense(9, activation=tf.nn.relu),
keras.layers.Dense(6,activation=tf.nn.relu),
keras.layers.Dense(1)
])
# Use the Adam optimizer with a learning rate of 0.01
optimizer=keras.optimizers.Adam(lr=.01, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
# Set the metrics required to be Mean Absolute Error and Mean Squared Error.For regression, the loss is mean_squared_error
model.compile(loss='mean_squared_error',
optimizer=optimizer,
metrics=['mean_absolute_error', 'mean_squared_error'])
# Create a model
history=model.fit(
normalized_train_data, train_labels,
epochs=1000, validation_data = (normalized_test_data,test_labels), verbose=0)
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
hist.tail()
def plot_history(history):
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('Mean Abs Error')
plt.plot(hist['epoch'], hist['mean_absolute_error'],
label='Train Error')
plt.plot(hist['epoch'], hist['val_mean_absolute_error'],
label = 'Val Error')
plt.ylim([2,5])
plt.legend()
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('Mean Square Error ')
plt.plot(hist['epoch'], hist['mean_squared_error'],
label='Train Error')
plt.plot(hist['epoch'], hist['val_mean_squared_error'],
label = 'Val Error')
plt.ylim([10,40])
plt.legend()
plt.show()
plot_history(history)
Observation
It can be seen that the mean absolute error is on an average about +/- 4.0. The validation error also is about the same. This can be reduced by playing around with the hyperparamaters and increasing the number of iterations
1a. Multivariate Regression in Tensorflow – R
# Install Tensorflow in RStudio #install_tensorflow() # Install Keras #install_packages("keras") library(tensorflow) library(keras) library(dplyr) library(dummies) ## dummies-1.5.6 provided by Decision Patterns library(tensorflow) library(keras)
Multivariate regression
This code performs multivariate regression using Tensorflow and keras on the advent of Parkinson disease through sound recordings see Parkinson Speech Dataset with Multiple Types of Sound Recordings Data Set. The clinician’s motorUPDRS score has to be predicted from the set of features.
Read the data
# Download the Parkinson's data from UCI Machine Learning repository dataset <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/parkinsons/telemonitoring/parkinsons_updrs.data") # Set the column names names(dataset) <- c("subject","age", "sex", "test_time","motor_UPDRS","total_UPDRS","Jitter","Jitter.Abs", "Jitter.RAP","Jitter.PPQ5","Jitter.DDP","Shimmer", "Shimmer.dB", "Shimmer.APQ3", "Shimmer.APQ5","Shimmer.APQ11","Shimmer.DDA", "NHR","HNR", "RPDE", "DFA","PPE") # Remove the column 'subject' as it is not relevant to analysis dataset1 <- subset(dataset, select = -c(subject)) # Make the column 'sex' as a factor for using dummies dataset1$sex=as.factor(dataset1$sex) # Add dummy variables for categorical cariable 'sex' dataset2 <- dummy.data.frame(dataset1, sep = ".") ## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = ## FALSE): non-list contrasts argument ignored dataset3 <- na.omit(dataset2)
Split the data as training and test in 80/20
## Split data 80% training and 20% test sample_size <- floor(0.8 * nrow(dataset3)) ## set the seed to make your partition reproducible set.seed(12) train_index <- sample(seq_len(nrow(dataset3)), size = sample_size) train_dataset <- dataset3[train_index, ] test_dataset <- dataset3[-train_index, ] train_data <- train_dataset %>% select(sex.0,sex.1,age, test_time,Jitter,Jitter.Abs,Jitter.PPQ5,Jitter.DDP, Shimmer, Shimmer.dB,Shimmer.APQ3,Shimmer.APQ11, Shimmer.DDA,NHR,HNR,RPDE,DFA,PPE) train_labels <- select(train_dataset,motor_UPDRS) test_data <- test_dataset %>% select(sex.0,sex.1,age, test_time,Jitter,Jitter.Abs,Jitter.PPQ5,Jitter.DDP, Shimmer, Shimmer.dB,Shimmer.APQ3,Shimmer.APQ11, Shimmer.DDA,NHR,HNR,RPDE,DFA,PPE) test_labels <- select(test_dataset,motor_UPDRS)
Normalize the data
# Normalize the data by subtracting the mean and dividing by the standard deviation normalize<-function(x) { y<-(x - mean(x)) / sd(x) return(y) } normalized_train_data <-apply(train_data,2,normalize) # Convert to matrix train_labels <- as.matrix(train_labels) normalized_test_data <- apply(test_data,2,normalize) test_labels <- as.matrix(test_labels)
Create the Deep Learning Model
model <- keras_model_sequential() model %>% layer_dense(units = 6, activation = 'relu', input_shape = dim(normalized_train_data)[2]) %>% layer_dense(units = 9, activation = 'relu') %>% layer_dense(units = 6, activation = 'relu') %>% layer_dense(units = 1) # Set the metrics required to be Mean Absolute Error and Mean Squared Error.For regression, the loss is # mean_squared_error model %>% compile( loss = 'mean_squared_error', optimizer = optimizer_rmsprop(), metrics = c('mean_absolute_error','mean_squared_error') ) # Fit the model # Use the test data for validation history <- model %>% fit( normalized_train_data, train_labels, epochs = 30, batch_size = 128, validation_data = list(normalized_test_data,test_labels) )
Plot mean squared error, mean absolute error and loss for training data and test data
plot(history)
Fig1
2. Binary classification in Tensorflow – Python
This is a simple binary classification problem from UCI Machine Learning repository and deals with data on Breast cancer from the Univ. of Wisconsin Breast Cancer Wisconsin (Diagnostic) Data Set bold text
import tensorflow as tf
from tensorflow import keras
import pandas as pd
# Read the data set from UCI ML site
dataset_path = keras.utils.get_file("breast-cancer-wisconsin.data", "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data")
raw_dataset = pd.read_csv(dataset_path, sep=",", na_values = "?", skipinitialspace=True,)
dataset = raw_dataset.copy()
#Check for Null and drop
dataset.isna().sum()
dataset = dataset.dropna()
dataset.isna().sum()
# Set the column names
dataset.columns = ["id","thickness", "cellsize", "cellshape","adhesion","epicellsize",
"barenuclei","chromatin","normalnucleoli","mitoses","class"]
dataset.head()
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.