Drawing nested Steiner chains
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
This is a Steiner chain with its enveloping cyclide:
And these are nested Steiner chains:
With R
We will include the cyclides in the plot. We firstly write a function returning a mesh of a cyclide. It is obtained by applying an inversion to the mesh of a torus.
library(rgl) torusMesh <- function(R, r, S, s, arc, ...){ vertices <- matrix(NA_real_, nrow = 3L, ncol = S*s) Normals <- matrix(NA_real_, nrow = 3L, ncol = S*s) full <- arc == 2*pi SS <- ifelse(full, S, S-1) indices <- matrix(NA_integer_, nrow = 4L, ncol = SS*s) u_ <- if(full){ seq(0, 2*pi, length.out = S+1)[-1] }else{ seq(0, arc, length.out = S) } v_ <- seq(0, 2*pi, length.out = s+1)[-1] for(i in 1:S){ cos_ui <- cos(u_[i]) sin_ui <- sin(u_[i]) cx <- R * cos_ui cy <- R * sin_ui for(j in 1:s){ rcos_vj <- r*cos(v_[j]) n <- c(rcos_vj*cos_ui, rcos_vj*sin_ui, r*sin(v_[j])) Normals[, (i-1)*s+j] <- -n vertices[, (i-1)*s+j] <- c(cx,cy,0) + n } } # quads s <- as.integer(s) for(i in 1L:SS){ ip1 <- ifelse(i==S, 1L, i+1L) for(j in 1L:s){ jp1 <- ifelse(j==s, 1L, j+1L) indices[,(i-1)*s+j] <- c((i-1L)*s+j, (i-1L)*s+jp1, (ip1-1L)*s+jp1, (ip1-1L)*s+j) } } qmesh3d( vertices = vertices, indices = indices, homogeneous = FALSE, material = list(...), normals = t(Normals) ) } # only for mu>c (ring cyclide) cyclideMesh <- function(mu, a, c, S=128, s=64, arc=2*pi, ...){ b <- sqrt(a^2-c^2) bb <- b*sqrt(mu^2-c^2) omega <- (a*mu + bb)/c Omega <- c(omega,0,0) inversion <- function(M){ Omega + 1/c(crossprod(M-Omega)) * (M-Omega) } d <- (a-c)*(mu-c)+bb r <- c*c*(mu-c) / ((a+c)*(mu-c)+bb) / d R <- c*c*(a-c) / ((a-c)*(mu+c)+bb) / d bb2 <- b*b*(mu*mu-c*c) denb1 <- c*(a*c-mu*c+c*c-a*mu-bb) b1 <- (a*mu*(c-mu)*(a+c)-bb2+c*c+bb*(c*(a-mu+c)-2*a*mu))/denb1 denb2 <- c*(a*c-mu*c-c*c+a*mu+bb) b2 <- (a*mu*(c+mu)*(a-c)+bb2-c*c+bb*(c*(a-mu-c)+2*a*mu))/denb2 omegaT <- (b1+b2)/2 tmesh <- torusMesh(R, r, S, s, arc, ...) tmesh$normals <- apply(tmesh$normals + tmesh$vb[1:3,] + c(omegaT,0,0), 2, inversion) tmesh$vb[1:3,] <- apply(tmesh$vb[1:3,] + c(omegaT,0,0), 2, inversion) tmesh$normals <- tmesh$vb[1:3,] - tmesh$normals tmesh }
Now here is the code which plots the nested Steiner chains:
# make a smooth unit sphere unitSphere <- subdivision3d(icosahedron3d(), depth=4) unitSphere$vb[4,] <- apply(unitSphere$vb[1:3,], 2, function(x) sqrt(sum(x^2))) unitSphere$normals <- unitSphere$vb # draw a sphere in the x-y plane drawSphere <- function(x, y, radius, ...){ shade3d( translate3d( scale3d(unitSphere, radius, radius, radius), x, y, 0), ...) } # draw a cyclide translated by (x,y,0) drawCyclide <- function(mu, a, c, x, y, ...){ mesh <- cyclideMesh(mu, a, c) shade3d(translate3d(mesh, x, y, 0), ...) } # image of circle (center, radius) by the inversion # with center c and power k iotaCircle <- function(c, k, center, radius){ r <- sqrt(abs(k)) z1 <- sign(k) * (center-c)/r D1 <- (radius/r)^2 - c(crossprod(z1)) z2 <- -z1/D1 R2 <- sqrt(c(crossprod(z2)) + 1/D1) list(center = r*z2+c, radius = r*R2) } # n: vector, the numbers of spheres at each step # -1 < phi < 1, phi != 0 steiner <- function(n, phi, color="red", shift=0, Center=c(0,0), radius=2, epsilon = 0.005){ depth <- length(n) invphi <- 1/phi I <- c(radius*invphi, 0) + Center k <- radius*radius*(1-invphi*invphi) m <- n[1] sine <- sin(pi/m) Coef <- 1/(1+sine) O1x <- 2*radius*invphi CRadius <- Coef*radius CSide <- CRadius*sine if(depth == 1){ circle <- iotaCircle(I-Center, k, c(0,0), CRadius - CSide) mu <- (radius - circle$radius)/2; a <- (radius + circle$radius)/2; c <- (circle$center[1] - O1x)/2; pt <- Center + circle$center/2; drawCyclide(mu, a, c, pt[1]-O1x/2, pt[2], color = "yellow", alpha = 0.2) } for(i in 1:m){ beta <- (i+shift)*2*pi/m pti <- c(CRadius*cos(beta), CRadius*sin(beta)) + Center cc <- iotaCircle(I, k, pti, CSide) center <- cc$center - c(O1x,0) r <- cc$radius if(depth == 1){ drawSphere(center[1], center[2], r-epsilon, color = color) } if(depth>1){ steiner(n[-1], phi, color=color, Center=center, radius=r, shift = -shift) } } return(invisible()) } # background color bgColor <- rgb(54, 57, 64, maxColorValue = 255) # plot open3d(windowRect = c(50,50,550,550)) bg3d(bgColor) view3d(0, -40, zoom = 0.75) steiner(n = c(3,3,4), phi = 0.3, color = "#B12A90FF", shift = 0.25)
Here is how to make a gif animation the nested Steiner chains:
# "bounding box" bBox <- function(){ r <- 2 lines3d( rbind( c(r, r, 0), c(-r, r, 0), c(-r, -r, 0), c(r, -r, 0) ), color = bgColor, alpha = 0 ) } shifts <- seq(0, 1, length.out = 46)[-1] open3d(windowRect = c(50,50,550,550)) bg3d(bgColor) view3d(0, -40, zoom = 0.75) for(i in seq_along(shifts)){ steiner(n = c(3,3,5), phi = 0.3, color = "#B12A90FF", shift = shifts[i]) bBox() snapshot3d(sprintf("img-%03d.png", i)) clear3d() } pngs <- list.files(pattern = "^img-.*png$") gifski::gifski(pngs, "SteinerChain_R.gif", width = 500, height = 500, delay = 0.04) file.remove(pngs)
With POV-Ray
#version 3.7; global_settings { assumed_gamma 1 } #include "colors.inc" #include "textures.inc" #include "glass.inc" // image of the circle (Center,Radius) by inversion pole c power k --- #macro invertedCircle(c, k, Center, Radius) #local r = sqrt(abs(k)); #local sign = (k>0 ? 1 : -1); #local z1 = sign * (Center-c)/r; #local D1 = Radius*Radius/r/r - vdot(z1,z1); #local z2 = -z1/D1; #local R2 = sqrt(vdot(z2,z2) + 1/D1); #local z3 = r*z2+c; <z3.x, z3.y, r*R2> #end // delete first element of an array ---------------------------------- #macro tail(Array) #local l = dimension_size(Array, 1); #local out = array[l-1]; #for(i, 0, l-2) #local out[i] = Array[i+1]; #end out #end // main macro -------------------------------------------------------- // n: array of integers >1, the numbers of spheres at each step // phi: number -1 < phi < 1, phi /= 0 // shift: number 0 <= shift < 1 #macro Steiner3D(n, phi, shift, Center, Radius, epsilon) #local Depth = dimension_size(n, 1); #local m = n[0]; #local sine = sin(pi/m); #local Side = Radius*sine; // side length of the m-gon #local Coef = 1/(1+sine); // Radius/(Radius+Side) #local CSide = Coef*Side; #local CRadius = Coef*Radius; #local invphi = 1/phi; #local I = <Radius*invphi,0> + Center; // inversion pole #local k = Radius*Radius*(1-invphi*invphi); // inversion power #local O1 = <2*invphi*Radius,0,0>; // center of exterior sphere // ----------------------------------------------------------------- union { // cyclides ------------------------------------------------------ #if(Depth=1) #local circle = invertedCircle(I-Center, k, <0,0>, CRadius-CSide); #local r = circle.z; #local center = <circle.x, circle.y>; #local mu = (Radius - r)/2; #local a = (Radius + r)/2; #local c = (circle.x - O1.x)/2; #local b = sqrt(a*a-c*c); #local pt = Center + center/2; #local O = <pt.x - O1.x/2, pt.y, 0>; polynomial {4 xyz(2,0,0): -2*mu*mu+2*b*b-4*a*a, xyz(1,0,0): 8*a*c*mu, xyz(0,0,0): -4*c*c*mu*mu+mu*mu*mu*mu+b*b*b*b-2*mu*mu*b*b, xyz(0,2,0): -2*mu*mu-2*b*b, xyz(0,0,2): -2*mu*mu+2*b*b, xyz(2,2,0): 2, xyz(2,0,2): 2, xyz(0,2,2): 2, xyz(4,0,0): 1, xyz(0,4,0): 1, xyz(0,0,4): 1 texture { Dark_Green_Glass finish { reflection 0 } } translate O } #end // spheres ------------------------------------------------------- #local i=1; #while(i<=m) #local beta = 2*(i+shift)*pi/m; #local pti = <CRadius*cos(beta), CRadius*sin(beta)> + Center; #local circle = invertedCircle(I, k, pti, CSide); #local center = <circle.x, circle.y, 0> - O1; #local r = circle.z; #if(Depth=1) sphere { center, r-epsilon texture { Chrome_Metal finish { ambient 0.05 diffuse 2 reflection 0 brilliance 1 specular 1.08 roughness 0.01 } } } #else Steiner3D(tail(n), phi, -shift, center, r, epsilon) #end #local i = i+1; #end } // end of union #end // ----------------------------- SCENE ---------------------------- // // sky --------------------------------------------------------------- #declare D = .5; sky_sphere { pigment { crackle color_map { [pow(0.5, D) color Black] [pow(0.6, D) color White*10] } scale .005/D } } // ----------------------------- plot ----------------------------- // #declare Center = <0,0>; // arbitrary #declare Radius = 3; // arbitrary >0 // camera and light source ------------------------------------------- camera { location <0, 0, -12> look_at <Center.x, Center.y, 0> angle 40 rotate <0,0,0> } light_source { <0, 0, -60> White } // #declare n = array[3] {3,4,6}; #declare phi = 0.3; #declare nframes = 45; #declare shift = frame_number/nframes; object { Steiner3D(n, phi, shift, Center, Radius, 0.005) rotate <50, 0, 0> translate <0, 0, 5> scale 1.85 } /* ini file ---------------------------------------------------------- Antialias = On Antialias_Threshold = 0.3 Antialias_Depth = 3 Input_File_Name = SteinerChain.pov Initial_Frame = 1 Final_Frame = 45 Cyclic_Animation = on Pause_when_Done = off ------------------------------------------------------------------- */
We get a nice result when we map a picture to the spheres:
#if(Depth=1) sphere { center, r-epsilon pigment{ image_map { png "R-Ladies.png" interpolate 2 } scale 1.1*sqrt(r) } } #else
With Asymptote
This Asymptote program produces the frames of the animation:
settings.render = 4; settings.outformat = "eps"; // ------------------------------------------------------------------- import solids; // files to create string[] files = { "SC-000", "SC-001", "SC-002", "SC-003", "SC-004", "SC-005", "SC-006", "SC-007", "SC-008", "SC-009", "SC-010", "SC-011", "SC-012", "SC-013", "SC-014", "SC-015", "SC-016", "SC-017", "SC-018", "SC-019", "SC-020", "SC-021", "SC-022", "SC-023", "SC-024", "SC-025", "SC-026", "SC-027", "SC-028", "SC-029", "SC-030", "SC-031", "SC-032", "SC-033", "SC-034", "SC-035", "SC-036", "SC-037", "SC-038", "SC-039", "SC-040", "SC-041", "SC-042", "SC-043", "SC-044"}; // camera and light -------------------------------------------------- size(10cm); currentprojection = orthographic(2,2,6); currentlight = (20,20,60); currentlight.background = black; viewportmargin = (10,10); // image of the circle (Center,Radius) by inversion pole c power k --- struct Circle { pair center; real radius; } Circle invertedCircle(pair c, real k, pair Center, real Radius){ real r = sqrt(abs(k)); pair z1 = sgn(k) * (Center-c)/r; real D1 = Radius*Radius/r/r - dot(z1,z1); pair z2 = -z1/D1; real R2 = sqrt(dot(z2,z2) + 1/D1); Circle out; out.center = r*z2 + c; out.radius = r*R2; return out; } // ------------------------------------------------------------------- struct Sphere { triple center; real radius; } // ------------------------------------------------------------------- struct Cyclide { real mu; real a; real c; triple shift; } // ------------------------------------------------------------------- // n: array of length depth, the numbers of spheres for each step // phi: number -1 < phi < 1, phi /= 0 // shift: number 0 <= shift < 1 void Steiner3D(Sphere[] spheres, Cyclide[] cyclides, int[] n, real phi, int depth, real shift, pair Center = (0,0), real Radius = 2){ real m = n[0]; real sine = sin(pi/m); real Side = Radius*sine; // side length of the m-gon real Coef = 1/(1+sine); // Radius/(Radius+Side) real CSide = Coef*Side; real CRadius = Coef*Radius; real invphi = 1/phi; pair I = (Radius*invphi,0) + Center; // inversion pole real k = Radius*Radius*(1-invphi*invphi); // inversion power real O1x = 2*invphi*Radius; // (O1x,0,0) center of exterior sphere // ----------------------------------------------------------------- if(depth == 1){ Cyclide newcyclide; Circle circle = invertedCircle(I-Center, k, (0,0), CRadius-CSide); newcyclide.mu = (Radius - circle.radius)/2; newcyclide.a = (Radius + circle.radius)/2; newcyclide.c = (circle.center.x - O1x)/2; pair pt = Center + circle.center/2; newcyclide.shift = (pt.x - O1x/2, pt.y, 0); cyclides.push(newcyclide); } // ----------------------------------------------------------------- for(int i = 0; i < m; ++i){ real beta = 2*(i+shift)*pi/m; pair pti = (CRadius*cos(beta), CRadius*sin(beta)) + Center; Circle circle = invertedCircle(I, k, pti, CSide); pair center = (circle.center.x - O1x, circle.center.y); real r = circle.radius; if(depth == 1){ Sphere newsphere; newsphere.center = (center.x, center.y, 0); newsphere.radius = r; spheres.push(newsphere); }else{ Steiner3D(spheres, cyclides, n[1:], phi, depth-1, -shift, center, r); } } } // ------------------------------------------------------------------- int[] n = {3,4,5}; real phi = 0.4; int depth = n.length; path3 boundingbox = circle(c=O, r=2.1, normal=Z); real epsilon = 0.005; for(int k = 0; k < files.length; ++k){ // compute spheres and cyclides ------------------------------------ Sphere[] spheres = new Sphere[0]; Cyclide[] cyclides = new Cyclide[0]; real shift = k/files.length; Steiner3D(spheres, cyclides, n, phi, depth, shift); // picture pic; draw(pic, boundingbox, black+opacity(0)); // draw the spheres ------------------------------------------------ for(int i = 0; i < spheres.length; ++i){ Sphere s = spheres[i]; draw(pic, surface(sphere(s.center, s.radius-epsilon)), rgb("8c2981ff")); } // draw the cyclides ----------------------------------------------- for(int i = 0; i < cyclides.length; ++i){ Cyclide c = cyclides[i]; real b = sqrt(c.a*c.a-c.c*c.c); triple F(pair uv){ real h = c.a-c.c*cos(uv.x)*cos(uv.y); real x = (c.mu*(c.c-c.a*cos(uv.x)*cos(uv.y))+b*b*cos(uv.x))/h; real y = (b*sin(uv.x)*(c.a-c.mu*cos(uv.y)))/h; real z = b*sin(uv.y)*(c.c*cos(uv.x)-c.mu)/h; return (x,y,z); } surface s = surface(F, (0,0), (2pi,2pi), 40, 40, Spline); draw(pic, shift(c.shift)*s, yellow+opacity(0.2)); } // ----------------------------------------------------------------- add(pic); shipout(files[k], bbox(black, FillDraw(black))); erase(); }
With three.js
Here is a variant with three.js
. I replaced the spheres
with “Barth polyedra”.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.