Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Category
Tags
In my previous post, I showed how to run a linear regression model with medical data. In this post, I will show how to conduct a logistic regression model. The major difference between linear and logistic regression is that the latter needs a dichotomous (0/1) dependent (outcome) variable, whereas the first, work with a continuous outcome. I will run a logistic regression to evaluate the effect of calcium and vitD on the osteoporosis.
Let's start loading the packages:
library(tidyverse) library(RNHANES) library(ggplot2) library(pROC)
Prepare the dataset
Variables included for this analysis are:
- age (years)
- sex (women, men)
- serum levels of vitamin D (mg/ml)
- serum levels of calcium (mg/ml)
- osteoporosis (yes/no, 1/0).
All variables are assessed from NHANES in the cycles 2007-2008 and 2009-2010.
d07 = nhanes_load_data("DEMO_E", "2007-2008") %>% select(SEQN, cycle, RIAGENDR, RIDAGEYR) %>% transmute(SEQN=SEQN, wave=cycle, RIAGENDR, RIDAGEYR) %>% left_join(nhanes_load_data("VID_E", "2007-2008"), by="SEQN") %>% select(SEQN, wave, RIAGENDR, RIDAGEYR, LBXVIDMS) %>% transmute(SEQN, wave, RIAGENDR, RIDAGEYR, vitD=LBXVIDMS) %>% left_join(nhanes_load_data("BIOPRO_E", "2007-2008"), by="SEQN") %>% select(SEQN, wave, RIAGENDR, RIDAGEYR, vitD, LBXSCA) %>% transmute(SEQN, wave, RIAGENDR, RIDAGEYR, vitD, Calcium = LBXSCA) %>% left_join(nhanes_load_data("OSQ_E", "2007-2008"), by="SEQN") %>% select(SEQN, wave, RIAGENDR, RIDAGEYR, vitD, Calcium, OSQ060) %>% transmute(SEQN, wave, RIAGENDR, RIDAGEYR, vitD, Calcium, Osteop = OSQ060) d09 = nhanes_load_data("DEMO_F", "2009-2010") %>% select(SEQN, cycle, RIAGENDR, RIDAGEYR) %>% transmute(SEQN=SEQN, wave=cycle, RIAGENDR, RIDAGEYR) %>% left_join(nhanes_load_data("VID_F", "2009-2010"), by="SEQN") %>% select(SEQN, wave, RIAGENDR, RIDAGEYR, LBXVIDMS) %>% transmute(SEQN, wave, RIAGENDR, RIDAGEYR, vitD=LBXVIDMS) %>% left_join(nhanes_load_data("BIOPRO_F", "2009-2010"), by="SEQN") %>% select(SEQN, wave, RIAGENDR, RIDAGEYR, vitD, LBXSCA) %>% transmute(SEQN, wave, RIAGENDR, RIDAGEYR, vitD, Calcium = LBXSCA) %>% left_join(nhanes_load_data("OSQ_F", "2009-2010"), by="SEQN") %>% select(SEQN, wave, RIAGENDR, RIDAGEYR, vitD, Calcium, OSQ060) %>% transmute(SEQN, wave, RIAGENDR, RIDAGEYR, vitD, Calcium, Osteop = OSQ060) dat = bind_rows(d07, d09) %>% as.data.frame()
Create categories of Vitamin D
Institute of Medicine cutoffs for Vitamin D
- Vitamin D deficiency: Serum 25OHD less than 30 nmol/L (12 ng/mL)
- Vitamin D inadequacy: Serum 25OHD 30-49 nmol/L (12-19 ng/mL)
- Vitamin D sufficiency: Serum 25OHD 50-125 nmol/L (20-50 ng/mL)
dat1 = dat %>% mutate( vitD_group = case_when( vitD < 30 ~ "Deficiency", vitD >= 30 & vitD < 50 ~ "Inadequacy", vitD >= 50 & vitD <= 125 ~ "Sufficiency"))
Exclude missings
dat2 = dat1 %>% filter(!is.na(vitD_group), !is.na(Calcium), !is.na(Osteop), Osteop!=9) %>% mutate(Gender = recode_factor(RIAGENDR, `1` = "Men", `2` = "Women"), Osteop = recode_factor(Osteop, `1` = 1, `2` = 0)) head(dat2) ## SEQN wave RIAGENDR RIDAGEYR vitD Calcium Osteop vitD_group Gender ## 1 41475 2007-2008 2 62 58.8 9.5 0 Sufficiency Women ## 2 41477 2007-2008 1 71 81.8 10.0 0 Sufficiency Men ## 3 41479 2007-2008 1 52 78.4 9.0 0 Sufficiency Men ## 4 41482 2007-2008 1 64 61.9 9.1 0 Sufficiency Men ## 5 41483 2007-2008 1 66 53.3 8.9 0 Sufficiency Men ## 6 41485 2007-2008 2 30 39.1 9.3 0 Inadequacy Women
Logit regression model
I will use the glm()
function to run the logistic regression and then summary()
command to get the results.
fit <- glm(Osteop ~ vitD_group + Calcium + Gender + RIDAGEYR, data = dat2, family = "binomial") summary(fit) ## ## Call: ## glm(formula = Osteop ~ vitD_group + Calcium + Gender + RIDAGEYR, ## family = "binomial", data = dat2) ## ## Deviance Residuals: ## Min 1Q Median 3Q Max ## -3.4265 0.1009 0.1894 0.3315 1.0305 ## ## Coefficients: ## Estimate Std. Error z value Pr(>|z|) ## (Intercept) 7.81969 1.08054 7.237 4.59e-13 *** ## vitD_groupInadequacy -0.17444 0.20124 -0.867 0.38603 ## vitD_groupSufficiency -0.53068 0.18159 -2.922 0.00347 ** ## Calcium 0.10330 0.11404 0.906 0.36506 ## GenderWomen -2.08873 0.12298 -16.984 < 2e-16 *** ## RIDAGEYR -0.07127 0.00330 -21.599 < 2e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## (Dispersion parameter for binomial family taken to be 1) ## ## Null deviance: 4591.4 on 10064 degrees of freedom ## Residual deviance: 3553.1 on 10059 degrees of freedom ## AIC: 3565.1 ## ## Number of Fisher Scoring iterations: 7
Transforms beta's to the odds ratio
The output of summary()
does not provide the odds ratio which are often presented in research papers. The exp
of beta's give the odds.
round(exp(coef(fit)), 2) ## (Intercept) vitD_groupInadequacy vitD_groupSufficiency ## 2489.14 0.84 0.59 ## Calcium GenderWomen RIDAGEYR ## 1.11 0.12 0.93
Interpreting results
From the output, I see that there is a significant association between vitamin D and osteoporosis. Compared to individuals with deficiency levels of vitamin D, those with sufficient levels of vitamin D in the blood have 41% (odds ratio: 0.59) lower risk of having osteoporosis. Inadequacy of vitamin D is not significantly (p=0.38) associated with osteoporosis.
To get the 95% confidence interval, I use confit()
for confidence intervals of each variable.
round(exp(confint(fit)), 2) ## 2.5 % 97.5 % ## (Intercept) 298.55 20650.10 ## vitD_groupInadequacy 0.56 1.24 ## vitD_groupSufficiency 0.41 0.83 ## Calcium 0.89 1.39 ## GenderWomen 0.10 0.16 ## RIDAGEYR 0.93 0.94
Assessing discrimination of the model with ROC curve
When studying a new biomarker, it is essential to illustrate the discrimination ability of the model, in addition to the association with the outcome, osteoporosis in our example. Levels of vitamin D in the blood are known to be related to osteoporosis, but here will show how much discrimination adds to the model.
First, I will run a model without vitamin D and assess the discrimination and after adding vitamin D in the model and see the differences in the ROC curve.
# model without vitamin D fit1 <- glm(Osteop ~ Calcium + Gender + RIDAGEYR, data = dat2, family = "binomial") # model with vitamin D fit2 <- glm(Osteop ~ vitD_group + Calcium + Gender + RIDAGEYR, data = dat2, family = "binomial") dat2$prob1=predict(fit1,type=c("response")) dat2$prob2=predict(fit2,type=c("response")) roc(Osteop ~ prob1, data = dat2) ## ## Call: ## roc.formula(formula = Osteop ~ prob1, data = dat2) ## ## Data: prob1 in 608 controls (Osteop 1) < 9457 cases (Osteop 0). ## Area under the curve: 0.8496 roc(Osteop ~ prob2, data = dat2) ## ## Call: ## roc.formula(formula = Osteop ~ prob2, data = dat2) ## ## Data: prob2 in 608 controls (Osteop 1) < 9457 cases (Osteop 0). ## Area under the curve: 0.8508
There is a slight improvement in discrimination with including vitamin D in the model from 0.8496 to 0.8508.
To learn more about AUC read this post: Interpretation of the AUC.
Related Post
- Linear Regression with Healthcare Data for Beginners in R
- Multiple Linear Regression in Python
- Linear regression in Python
- Logistic Regression with Python
- Linear Regression with Python
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.