[This article was first published on S+/R – Yet Another Blog in Statistical Computing, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In the post https://statcompute.wordpress.com/2019/04/27/more-general-weighted-binning, I’ve shown how to do the weighted binning with the function wqtl_bin() by the iterative partitioning. However, the outcome from wqtl_bin() sometimes can be too coarse. The function wgbm_bin() (https://github.com/statcompute/MonotonicBinning/blob/master/code/wgbm_bin.R) leverages the idea of gbm() that implements the Generalized Boosted Model and generates more granular weighted binning outcomes.
Below is the demonstration showing the difference between wqtl_bin() and wgbm_bin() outcomes. Even with the same data, the wgbm_bin() function is able to generate a more granular binning result and 14% higher Information Value.
To leave a comment for the author, please follow the link and comment on their blog: S+/R – Yet Another Blog in Statistical Computing.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.