[This article was first published on R tutorial for Spatial Statistics, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
This is another function I wrote to access the MET office API and obtain a 5-day ahead weather forecast:Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
< !-- HTML generated using hilite.me -->
METDataDownload <- function(stationID, product, key){ library("RJSONIO") #Load Library library("plyr") library("dplyr") library("lubridate") connectStr <- paste0("http://datapoint.metoffice.gov.uk/public/data/val/wxfcs/all/json/",stationID,"?res=",product,"&key=",key) con <- url(connectStr) data.json <- fromJSON(paste(readLines(con), collapse="")) close(con) #Station LocID <- data.json$SiteRep$DV$Location$`i` LocName <- data.json$SiteRep$DV$Location$name Country <- data.json$SiteRep$DV$Location$country Lat <- data.json$SiteRep$DV$Location$lat Lon <- data.json$SiteRep$DV$Location$lon Elev <- data.json$SiteRep$DV$Location$elevation Details <- data.frame(LocationID = LocID, LocationName = LocName, Country = Country, Lon = Lon, Lat = Lat, Elevation = Elev) #Parameters param <- do.call("rbind",data.json$SiteRep$Wx$Param) #Forecast if(product == "daily"){ dates <- unlist(lapply(data.json$SiteRep$DV$Location$Period, function(x){x$value})) DayForecast <- do.call("rbind", lapply(data.json$SiteRep$DV$Location$Period, function(x){x$Rep[[1]]})) NightForecast <- do.call("rbind", lapply(data.json$SiteRep$DV$Location$Period, function(x){x$Rep[[2]]})) colnames(DayForecast)[ncol(DayForecast)] <- "Type" colnames(NightForecast)[ncol(NightForecast)] <- "Type" ForecastDF <- plyr::rbind.fill.matrix(DayForecast, NightForecast) %>% as_tibble() %>% mutate(Date = as.Date(rep(dates, 2))) %>% mutate(Gn = as.numeric(Gn), Hn = as.numeric(Hn), PPd = as.numeric(PPd), S = as.numeric(S), Dm = as.numeric(Dm), FDm = as.numeric(FDm), W = as.numeric(W), U = as.numeric(U), Gm = as.numeric(Gm), Hm = as.numeric(Hm), PPn = as.numeric(PPn), Nm = as.numeric(Nm), FNm = as.numeric(FNm)) } else { dates <- unlist(lapply(data.json$SiteRep$DV$Location$Period, function(x){x$value})) Forecast <- do.call("rbind", lapply(lapply(data.json$SiteRep$DV$Location$Period, function(x){x$Rep}), function(x){do.call("rbind",x)})) colnames(Forecast)[ncol(Forecast)] <- "Hour" DateTimes <- seq(ymd_hms(paste0(as.Date(dates[1])," 00:00:00")),ymd_hms(paste0(as.Date(dates[length(dates)])," 21:00:00")), "3 hours") if(nrow(Forecast)<length(DateTimes)){ extra_lines <- length(DateTimes)-nrow(Forecast) for(i in 1:extra_lines){ Forecast <- rbind(rep("0", ncol(Forecast)), Forecast) } } ForecastDF <- Forecast %>% as_tibble() %>% mutate(Hour = DateTimes) %>% filter(D != "0") %>% mutate(F = as.numeric(F), G = as.numeric(G), H = as.numeric(H), Pp = as.numeric(Pp), S = as.numeric(S), T = as.numeric(T), U = as.numeric(U), W = as.numeric(W)) } list(Details, param, ForecastDF) }
The API key can be obtained for free at this link:
https://www.metoffice.gov.uk/datapoint/api
Once we have an API key we can simply insert the station ID and the type of product we want to obtain the forecast. We can select between two products: daily and 3hourly
To obtain the station ID we need to use another query and download an XML with all stations names and ID:
< !-- HTML generated using hilite.me -->
library(xml2) url = paste0("http://datapoint.metoffice.gov.uk/public/data/val/wxfcs/all/daily/sitelist?key=",key) XML_StationList <- read_xml(url) write_xml(XML_StationList, "StationList.xml")
This will save an XML, which we can then open with a txt editor (e.g. Notepad++).
The function can be used as follows:
< !-- HTML generated using hilite.me -->
METDataDownload(stationID=3081, product="daily", key)
It will return a list with 3 elements:
- Station info: Name, ID, Lon, Lat, Elevation
- Parameter explanation
- Weather forecast: tibble format
I have not tested it much, so if you find any bug you are welcome to tweak it on GitHub:
To leave a comment for the author, please follow the link and comment on their blog: R tutorial for Spatial Statistics.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.