Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
You are a R user and you have to evaluate the integral \[ \int_{-5}^4\int_{-5}^{3-x}\int_{-10}^{6-x-y} f(x,y,z) \,\mathrm{d}z\,\mathrm{d}y\,\mathrm{d}x \] for a certain function \(f\). How?
A possibility is to nest the integrate
function:
f <- function(x,y,z) x + y*z integrate(Vectorize(function(x) { integrate(Vectorize(function(y) { integrate(function(z) { f(x,y,z) }, -10, 6 - x - y)$value }), -5, 3 - x)$value }), -5, 4) ## -5358.3 with absolute error < 9.5e-11
This approach works well in general. But it has one default: the estimate of the absolute error it returns is not reliable, because the estimates of the absolute errors of the inner integrals are not taken into account.
We provide another way to evaluate this integral, giving a reliable estimate of the absolute error.
The domain of integration is defined by the set of inequalities:
\[ \left\{\begin{matrix} -5 & \leq & x & \leq & 4 \\
-5 & \leq & y & \leq & 3-x \\ -10 & \leq & z
& \leq & 6-x-y \end{matrix} \right. \]
which is equivalent to
\[ \left\{\begin{matrix} -x & \leq & 5 \\ x & \leq &
4 \\ -y & \leq & 5 \\ x+y & \leq & 3 \\ -z & \leq
& 10 \\ x+y+z & \leq & 6 \end{matrix} \right.. \]
This set of inequalities defines a convex polyhedron. We can get the
vertices of this polyhedron with the rcdd
package:
A <- rbind( c(-1, 0, 0), # -x c( 1, 0, 0), # x c( 0,-1, 0), # -y c( 1, 1, 0), # x+y c( 0, 0,-1), # -z c( 1, 1, 1) # x+y+z ) b <- c(5, 4, 5, 3, 10, 6) library(rcdd) scdd(makeH(A,b))$output[,-(1:2)] ## [,1] [,2] [,3] ## [1,] -5 -5 16 ## [2,] -5 8 3 ## [3,] 4 -1 3 ## [4,] 4 -5 7 ## [5,] 4 -1 -10 ## [6,] 4 -5 -10 ## [7,] -5 8 -10 ## [8,] -5 -5 -10
Alternatively, we can also get the vertices with the
vertexenum
package:
library(vertexenum) enumerate.vertices(A,b) ## [,1] [,2] [,3] ## [1,] 4 -1 3 ## [2,] 4 -5 7 ## [3,] -5 -5 16 ## [4,] -5 8 3 ## [5,] 4 -1 -10 ## [6,] 4 -5 -10 ## [7,] -5 -5 -10 ## [8,] -5 8 -10
Then, to evaluate the integral, we proceed as follows:
-
split the polyhedron into simplices (tetrahedra), with the
geometry
package; -
evaluate the integral over the union of these simplices with the
SimplicialCubature
package.
Let’s go. We split the polyhedron:
vertices <- enumerate.vertices(A,b) library(geometry) ix <- delaunayn(vertices)
Here is the polyhedron splitted into simplices:
library(rgl) triangles <- do.call( cbind, lapply(1:nrow(ix), function(i) combn(ix[i,], 3)) ) mesh <- tmesh3d(t(vertices), triangles, homogeneous = FALSE) view3d(80, 10, zoom = 0.6) shade3d(mesh, color = "yellow", alpha = 0.3) wire3d(mesh)
We store the union of the obtained simplices in an array S
:
S <- array(NA_real_, dim=c(3,4,nrow(ix))) for(i in 1:nrow(ix)){ S[,,i] <- t(vertices[ix[i,],]) }
Now we are ready to use the SimplicialCubature
package.
Let’s define the function \(f\) before,
for example:
f <- function(xyz){ xyz[1] + xyz[2]*xyz[3] # f(x,y,z) = x + y*z }
Finally:
library(SimplicialCubature) adaptIntegrateSimplex(f, S) ## $integral ## [1] -5358.3 ## ## $estAbsError ## [1] 1.18797e-08 ## ## $functionEvaluations ## [1] 330 ## ## $returnCode ## [1] 0 ## ## $message ## [1] "OK"
We get the estimated value of the integral with a reliable estimate of the absolute error.
For this example, we can do better. The function \(f\) is a polynomial: \[ f(x,y,z) = x + yz. \]
Then we can get the exact value of the integral by using the
integrateSimplexPolynomial
function of the
SimplicialCubature
package. Firstly, we have to define the
polynomial with the definePoly
function. One has
\[ f(x,y,z) = c_1 \times x^{\alpha_1}y^{\beta_1}z^{\gamma_1} \, + \,
c_2 \times x^{\alpha_2}y^{\beta_2}z^{\gamma_2} \]
with \(c_1 = 1\),
\(c_2=1\),
\((\alpha_1,\beta_1,\gamma_1)=(1,0,0)\),
\((\alpha_2,\beta_2,\gamma_2)=(0,1,1)\). Then the polynomial is defined in this way:
P <- definePoly(c(1,1), rbind(c(1,0,0), c(0,1,1)))
And its integral is obtained in this way:
integrateSimplexPolynomial(P, S) ## $integral ## [1] -5358.3 ## ## $functionEvaluations ## [1] 24
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.