Site icon R-bloggers

My course on Hyperparameter Tuning in R is now on Data Camp!

[This article was first published on Shirin's playgRound, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I am very happy to announce that (after many months) my interactive course on Hyperparameter Tuning in R has now been officially launched on Data Camp!


Course Description

For many machine learning problems, simply running a model out-of-the-box and getting a prediction is not enough; you want the best model with the most accurate prediction. One way to perfect your model is with hyperparameter tuning, which means optimizing the settings for that specific model. In this course, you will work with the caret, mlr and h2o packages to find the optimal combination of hyperparameters in an efficient manner using grid search, random search, adaptive resampling and automatic machine learning (AutoML). Furthermore, you will work with different datasets and tune different supervised learning models, such as random forests, gradient boosting machines, support vector machines, and even neural nets. Get ready to tune!

You can take the course here:

https://www.datacamp.com/courses/hyperparameter-tuning-in-r

To leave a comment for the author, please follow the link and comment on their blog: Shirin's playgRound.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.