Are you parallelizing your raster operations? You should!
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
If you plan to do anything with the raster package you should definitely consider parallelize all your processes, especially if you are working with very large image files. I couldn’t find any blog post describing how to parallelize with the raster package (it is well documented in the package documentation, though). So here my notes.
Load some example data
Let’s first get some raster data from here, any file will do but I’m using the Cambodian population data for 2015 (KHM_ppp_v2b_2015_UNadj
).
library(raster) khm_pop.r <- raster("~/Downloads/KHM_ppp_v2b_2015_UNadj/KHM_ppp_v2b_2015_UNadj.tif")
We can plot it with
library(rasterVis) library(viridis) library(ggplot2) rasterVis::gplot(khm_pop.r) + geom_tile(aes(fill = log(value))) + viridis::scale_fill_viridis(direction = -1, na.value='#FFFFFF00') + theme_bw()
Projection
Now, let’s first project the raster without any parallelization.
start_time <- Sys.time() res1 <- projectRaster(khm_pop.r, crs = '+proj=utm +zone=48 +datum=WGS84 +units=m +no_defs') end_time <- Sys.time() end_time - start_time ## Time difference of 1.088329 mins rasterVis::gplot(res1) + geom_tile(aes(fill = log(value))) + viridis::scale_fill_viridis(direction = -1, na.value='#FFFFFF00') + theme_bw()
And now let’s parallelize the process. There are two approaches to parallelization with raster objects (do ?clusterR
for the documentation of the package mantainers):
- By including the raster function between a
beginCluster()
and anendCluster()
. - By using
clusterR()
like inclusterR(x, fun, args=NULL, cl=mycluster)
, wheremycluster
is a cluster object generated for example bygetCluster()
.
Yet clusterR()
doesn’t work with merge
, crop
, mosaic
, disaggregate
, aggregate
, resample
, projectRaster
, focal
, distance
, buffer
and direction
.
Let’s try the first approach first.
start_time <- Sys.time() beginCluster() ## 4 cores detected, using 3 res2 <- projectRaster(khm_pop.r, crs = '+proj=utm +zone=48 +datum=WGS84 +units=m +no_defs') ## Using cluster with 3 nodes endCluster() end_time <- Sys.time() end_time - start_time ## Time difference of 1.548856 mins rasterVis::gplot(res2) + geom_tile(aes(fill = log(value))) + viridis::scale_fill_viridis(direction = -1, na.value='#FFFFFF00') + theme_bw()
Maths
To test the second approach, let’s use the calc()
and sqrt()
functions, first without parallelization:
start_time <- Sys.time() calc(khm_pop.r, sqrt) ## class : RasterLayer ## dimensions : 5205, 6354, 33072570 (nrow, ncol, ncell) ## resolution : 0.0008333, 0.0008333 (x, y) ## extent : 102.3375, 107.6323, 10.35008, 14.6874 (xmin, xmax, ymin, ymax) ## coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0 ## data source : in memory ## names : layer ## values : 0.02269337, 42.87014 (min, max) end_time <- Sys.time() end_time - start_time ## Time difference of 3.316296 secs
and then with parallelization, this time with clusterR()
:
start_time <- Sys.time() beginCluster() ## 4 cores detected, using 3 clusterR(khm_pop.r, sqrt) ## class : RasterLayer ## dimensions : 5205, 6354, 33072570 (nrow, ncol, ncell) ## resolution : 0.0008333, 0.0008333 (x, y) ## extent : 102.3375, 107.6323, 10.35008, 14.6874 (xmin, xmax, ymin, ymax) ## coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0 ## data source : in memory ## names : layer ## values : 0.02269337, 42.87014 (min, max) endCluster() end_time <- Sys.time() end_time - start_time ## Time difference of 16.49228 secs
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.