Site icon R-bloggers

Shinyfit: Advanced regression modelling in a shiny app

[This article was first published on R – DataSurg, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Many of our projects involve getting doctors, nurses, and medical students to collect data on the patients they are looking after. We want to involve many of them in data analysis, without the requirement for coding experience or access to statistical software. To achieve this we have built Shinyfit, a shiny app for linear, logistic, and Cox PH regression. shinyfit uses our finalfit package.

Features

Examples

argoshare.is.ed.ac.uk/shinyfit_colon
argoshare.is.ed.ac.uk/shinyfit_melanoma

Code

github.com/ewenharrison/shinyfit

Screenshots

Linear, logistic or CPH regression tables
Coefficient, odds ratio or hazard ratio plots
Crosstabs
Inspect dataset with ff_glimpse

Use your data

To use your own data, clone or download app from github. Editing 0_prep.R is straightforward and takes about 5 mins. The main purpose is to create human-readable menu items and allows sorting of variables into any categories, such as outcome and explanatory.  Errors in shinyfit are usually related to the underlying dataset, e.g. It is fully mobile compliant, including datatables. There will be bugs. Please report here

To leave a comment for the author, please follow the link and comment on their blog: R – DataSurg.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.