Site icon R-bloggers

An R Shiny app to recognize flower species

[This article was first published on R – Longhow Lam's Blog, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Introduction

Playing around with PyTorch and R Shiny resulted in a simple Shiny app where the user can upload a flower image, the system will then predict the flower species.

Steps that I took

  1. Download labeled flower data from the Visual Geometry Group,
  2. Install Pytorch and download their transfer learning tutorial script,
  3. You need to slightly adjust the script to work on the flower data,
  4. Train and Save the model as a (*.pt) file, 
  5. Using the R reticulate package you can call python code from within R so that you can use a pytorch models in R,
  6. Create a Shiny app that allows the user to upload an image and display the predicted flower species.

Some links

Github repo with: Python notebook to fine tune the resnet18 model, R script with Shiny App, data folder with images.

Live running shiny app can be found here

Cheers, Longhow

To leave a comment for the author, please follow the link and comment on their blog: R – Longhow Lam's Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.