Working with Date and Time in R

[This article was first published on Rsquared Academy Blog, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Introduction

In this post, we will learn to work with date/time data in R using lubridate, an R package that makes it easy to work with dates and time. Let us begin by installing and loading the pacakge.

Libraries, Code & Data

We will use the following packages:

The data sets can be downloaded from here and the codes from here.

library(lubridate)
library(dplyr)
library(magrittr)
library(readr)

Quick Intro

Origin

Let us look at the origin for the numbering system used for date and time calculations in R.

origin
## [1] "1970-01-01 UTC"

Current Date/Time

Next, let us check out the current date, time and whether it occurs in the am or pm. now() returns the date time as well as the time zone whereas today() will return only the current date. am() and pm() return TRUE or FALSE.

now()
## [1] "2019-01-29 14:26:58 IST"
today()
## [1] "2019-01-29"
am(now())  
## [1] FALSE
pm(now())
## [1] TRUE

Case Study

Data

transact <- read_csv('https://raw.githubusercontent.com/rsquaredacademy/datasets/master/transact.csv')
## # A tibble: 2,466 x 3
##    Invoice    Due        Payment   
##    <date>     <date>     <date>    
##  1 2013-01-02 2013-02-01 2013-01-15
##  2 2013-01-26 2013-02-25 2013-03-03
##  3 2013-07-03 2013-08-02 2013-07-08
##  4 2013-02-10 2013-03-12 2013-03-17
##  5 2012-10-25 2012-11-24 2012-11-28
##  6 2012-01-27 2012-02-26 2012-02-22
##  7 2013-08-13 2013-09-12 2013-09-09
##  8 2012-12-16 2013-01-15 2013-01-12
##  9 2012-05-14 2012-06-13 2012-07-01
## 10 2013-07-01 2013-07-31 2013-07-26
## # ... with 2,456 more rows

Data Dictionary

The data set has 3 columns. All the dates are in the format (yyyy-mm-dd).

  • Invoice: invoice date
  • Due: due date
  • Payment: payment date

We will use the functions in the lubridate package to answer a few questions we have about the transact data.

  • extract date, month and year from Due
  • compute the number of days to settle invoice
  • compute days over due
  • check if due year is a leap year
  • check when due day in february is 29, whether it is a leap year
  • how many invoices were settled within due date
  • how many invoices are due in each quarter
  • what is the average duration between invoice date and payment date

Extract Date, Month & Year from Due Date

The first thing we will learn is to extract the date, month and year.



this_day <- as_date('2017-03-23')
day(this_day)
## [1] 23
month(this_day)
## [1] 3
year(this_day)
## [1] 2017

Let us now extract the date, month and year from the Due column.

transact %>%
  mutate(
    due_day   = day(Due),
    due_month = month(Due),
    due_year  = year(Due)
  )
## # A tibble: 2,466 x 6
##    Invoice    Due        Payment    due_day due_month due_year
##    <date>     <date>     <date>       <int>     <dbl>    <dbl>
##  1 2013-01-02 2013-02-01 2013-01-15       1         2     2013
##  2 2013-01-26 2013-02-25 2013-03-03      25         2     2013
##  3 2013-07-03 2013-08-02 2013-07-08       2         8     2013
##  4 2013-02-10 2013-03-12 2013-03-17      12         3     2013
##  5 2012-10-25 2012-11-24 2012-11-28      24        11     2012
##  6 2012-01-27 2012-02-26 2012-02-22      26         2     2012
##  7 2013-08-13 2013-09-12 2013-09-09      12         9     2013
##  8 2012-12-16 2013-01-15 2013-01-12      15         1     2013
##  9 2012-05-14 2012-06-13 2012-07-01      13         6     2012
## 10 2013-07-01 2013-07-31 2013-07-26      31         7     2013
## # ... with 2,456 more rows

Compute days to settle invoice

Time to do some arithmetic with the dates. Let us calculate the duration of a course by subtracting the course start date from the course end date.



course_start    <- as_date('2017-04-12')
course_end      <- as_date('2017-04-21')
course_duration <- course_end - course_start
course_duration
## Time difference of 9 days

Let us estimate the number of days to settle the invoice by subtracting the date of invoice from the date of payment.

transact %>%
  mutate(
    days_to_pay = Payment - Invoice
  )
## # A tibble: 2,466 x 4
##    Invoice    Due        Payment    days_to_pay
##    <date>     <date>     <date>     <time>     
##  1 2013-01-02 2013-02-01 2013-01-15 13 days    
##  2 2013-01-26 2013-02-25 2013-03-03 36 days    
##  3 2013-07-03 2013-08-02 2013-07-08  5 days    
##  4 2013-02-10 2013-03-12 2013-03-17 35 days    
##  5 2012-10-25 2012-11-24 2012-11-28 34 days    
##  6 2012-01-27 2012-02-26 2012-02-22 26 days    
##  7 2013-08-13 2013-09-12 2013-09-09 27 days    
##  8 2012-12-16 2013-01-15 2013-01-12 27 days    
##  9 2012-05-14 2012-06-13 2012-07-01 48 days    
## 10 2013-07-01 2013-07-31 2013-07-26 25 days    
## # ... with 2,456 more rows

Compute days over due

How many of the invoices were settled post the due date? We can find this by:

  • subtracting the due date from the payment date
  • counting the number of rows where delay < 0
transact %>%
  mutate(
    delay = Due - Payment
  ) %>%
  filter(delay < 0) %>%
  tally()
## # A tibble: 1 x 1
##       n
##   <int>
## 1   877

Is due year a leap year?

Just for fun, let us check if the due year happens to be a leap year.

transact %>%
  mutate(
    is_leap = leap_year(Due)
  )
## # A tibble: 2,466 x 4
##    Invoice    Due        Payment    is_leap
##    <date>     <date>     <date>     <lgl>  
##  1 2013-01-02 2013-02-01 2013-01-15 FALSE  
##  2 2013-01-26 2013-02-25 2013-03-03 FALSE  
##  3 2013-07-03 2013-08-02 2013-07-08 FALSE  
##  4 2013-02-10 2013-03-12 2013-03-17 FALSE  
##  5 2012-10-25 2012-11-24 2012-11-28 TRUE   
##  6 2012-01-27 2012-02-26 2012-02-22 TRUE   
##  7 2013-08-13 2013-09-12 2013-09-09 FALSE  
##  8 2012-12-16 2013-01-15 2013-01-12 FALSE  
##  9 2012-05-14 2012-06-13 2012-07-01 TRUE   
## 10 2013-07-01 2013-07-31 2013-07-26 FALSE  
## # ... with 2,456 more rows

If due day is February 29, is it a leap year?

Let us do some data sanitization. If the due day happens to be February 29, let us ensure that the due year is a leap year. Below are the steps to check if the due year is a leap year:

  • we will extract the following from the due date:
    • day
    • month
    • year
  • we will then create a new column is_leap which will have be set to TRUE if the year is a leap year else it will be set to FALSE
  • filter all the payments due on 29th Feb
  • select the following columns:
    • Due
    • is_leap
transact %>%
  mutate(
    due_day   = day(Due),
    due_month = month(Due),
    due_year  = year(Due),
    is_leap   = leap_year(due_year)
  ) %>%
  filter(due_month == 2 & due_day == 29) %>%
  select(Due, is_leap) 
## # A tibble: 4 x 2
##   Due        is_leap
##   <date>     <lgl>  
## 1 2012-02-29 TRUE   
## 2 2012-02-29 TRUE   
## 3 2012-02-29 TRUE   
## 4 2012-02-29 TRUE

Shift Date

Time to shift some dates. We can shift a date by days, weeks or months. Let us shift the course start date by:

  • 2 days
  • 3 weeks
  • 1 year



course_start + days(2)
## [1] "2017-04-14"
course_start + weeks(3)
## [1] "2017-05-03"
course_start + years(1)
## [1] "2018-04-12"

Interval

Let us calculate the duration of the course using interval. If you observe carefully, the result is not the duration in days but an object of class interval. Now let us learn how we can use intervals.



interval(course_start, course_end)
## [1] 2017-04-12 UTC--2017-04-21 UTC

Intervals Overlap

Let us say you are planning a vacation and want to check if the vacation dates overlap with the course dates. You can do this by:

  • creating vacation and course intervals
  • use int_overlaps() to check if two intervals overlap. It returns TRUE if the intervals overlap else FALSE.

Let us use the vacation start and end dates to create vacation_interval and then check if it overlaps with course_interval.



vacation_start    <- as_date('2017-04-19')
vacation_end      <- as_date('2017-04-25')
course_interval   <- interval(course_start, course_end)
vacation_interval <- interval(vacation_start, vacation_end)
int_overlaps(course_interval, vacation_interval)
## [1] TRUE

How many invoices were settled within due date?

Let us use intervals to count the number of invoices that were settled within the due date. To do this, we will:

  • create an interval for the invoice and due date
  • create a new column due_next by incrementing the due date by 1 day
  • another interval for due_next and the payment date
  • if the intervals overlap, the payment was made within the due date
transact %>%
  mutate(
    inv_due_interval = interval(Invoice, Due),
    due_next         = Due + days(1),
    due_pay_interval = interval(due_next, Payment),
    overlaps         = int_overlaps(inv_due_interval, due_pay_interval)
  ) %>%
  select(Invoice, Due, Payment, overlaps)
## # A tibble: 2,466 x 4
##    Invoice    Due        Payment    overlaps
##    <date>     <date>     <date>     <lgl>   
##  1 2013-01-02 2013-02-01 2013-01-15 TRUE    
##  2 2013-01-26 2013-02-25 2013-03-03 FALSE   
##  3 2013-07-03 2013-08-02 2013-07-08 TRUE    
##  4 2013-02-10 2013-03-12 2013-03-17 FALSE   
##  5 2012-10-25 2012-11-24 2012-11-28 FALSE   
##  6 2012-01-27 2012-02-26 2012-02-22 TRUE    
##  7 2013-08-13 2013-09-12 2013-09-09 TRUE    
##  8 2012-12-16 2013-01-15 2013-01-12 TRUE    
##  9 2012-05-14 2012-06-13 2012-07-01 FALSE   
## 10 2013-07-01 2013-07-31 2013-07-26 TRUE    
## # ... with 2,456 more rows

Below we show another method to count the number of invoices paid within the due date. Instead of using days to change the due date, we use int_shift to shift it by 1 day.

transact %>%
  mutate(
    inv_due_interval = interval(Invoice, Due),
    due_pay_interval = interval(Due, Payment),  
    due_pay_next     = int_shift(due_pay_interval, by = days(1)),
    overlaps         = int_overlaps(inv_due_interval, due_pay_next)
  ) %>%
  select(Invoice, Due, Payment, overlaps)
## # A tibble: 2,466 x 4
##    Invoice    Due        Payment    overlaps
##    <date>     <date>     <date>     <lgl>   
##  1 2013-01-02 2013-02-01 2013-01-15 TRUE    
##  2 2013-01-26 2013-02-25 2013-03-03 FALSE   
##  3 2013-07-03 2013-08-02 2013-07-08 TRUE    
##  4 2013-02-10 2013-03-12 2013-03-17 FALSE   
##  5 2012-10-25 2012-11-24 2012-11-28 FALSE   
##  6 2012-01-27 2012-02-26 2012-02-22 TRUE    
##  7 2013-08-13 2013-09-12 2013-09-09 TRUE    
##  8 2012-12-16 2013-01-15 2013-01-12 TRUE    
##  9 2012-05-14 2012-06-13 2012-07-01 FALSE   
## 10 2013-07-01 2013-07-31 2013-07-26 TRUE    
## # ... with 2,456 more rows

You might be thinking why we incremented the due date by a day before creating the interval between the due day and the payment day. If we do not increment, both the intervals will share a common date i.e. the due date and they will always overlap as shown below:

transact %>%
  mutate(
    inv_due_interval = interval(Invoice, Due),
    due_pay_interval = interval(Due, Payment),
    overlaps         = int_overlaps(inv_due_interval, due_pay_interval)
  ) %>%
  select(Invoice, Due, Payment, overlaps)
## # A tibble: 2,466 x 4
##    Invoice    Due        Payment    overlaps
##    <date>     <date>     <date>     <lgl>   
##  1 2013-01-02 2013-02-01 2013-01-15 TRUE    
##  2 2013-01-26 2013-02-25 2013-03-03 TRUE    
##  3 2013-07-03 2013-08-02 2013-07-08 TRUE    
##  4 2013-02-10 2013-03-12 2013-03-17 TRUE    
##  5 2012-10-25 2012-11-24 2012-11-28 TRUE    
##  6 2012-01-27 2012-02-26 2012-02-22 TRUE    
##  7 2013-08-13 2013-09-12 2013-09-09 TRUE    
##  8 2012-12-16 2013-01-15 2013-01-12 TRUE    
##  9 2012-05-14 2012-06-13 2012-07-01 TRUE    
## 10 2013-07-01 2013-07-31 2013-07-26 TRUE    
## # ... with 2,456 more rows

Shift Interval

Intervals can be shifted too. In the below example, we shift the course interval by:

  • 1 day
  • 3 weeks
  • 1 year



course_interval <- interval(course_start, course_end)
int_shift(course_interval, by = days(1))
## [1] 2017-04-13 UTC--2017-04-22 UTC
int_shift(course_interval, by = weeks(3))
## [1] 2017-05-03 UTC--2017-05-12 UTC
int_shift(course_interval, by = years(1))
## [1] 2018-04-12 UTC--2018-04-21 UTC

Within

Let us assume that we have to attend a conference in April 2017. Does it occur during the course duration? We can answer this using %within% which will return TRUE if a date falls within an interval.



conference <- as_date('2017-04-15')
conference %within% course_interval
## [1] TRUE

How many invoices were settled within due date?

Let us use %within% to count the number of invoices that were settled within the due date. We will do this by:

  • creating an interval for the invoice and due date
  • check if the payment date falls within the above interval
transact %>%
  mutate(
    inv_due_interval = interval(Invoice, Due),
    overlaps         = Payment %within% inv_due_interval
  ) %>%
  select(Due, Payment, overlaps)
## # A tibble: 2,466 x 3
##    Due        Payment    overlaps
##    <date>     <date>     <lgl>   
##  1 2013-02-01 2013-01-15 TRUE    
##  2 2013-02-25 2013-03-03 FALSE   
##  3 2013-08-02 2013-07-08 TRUE    
##  4 2013-03-12 2013-03-17 FALSE   
##  5 2012-11-24 2012-11-28 FALSE   
##  6 2012-02-26 2012-02-22 TRUE    
##  7 2013-09-12 2013-09-09 TRUE    
##  8 2013-01-15 2013-01-12 TRUE    
##  9 2012-06-13 2012-07-01 FALSE   
## 10 2013-07-31 2013-07-26 TRUE    
## # ... with 2,456 more rows

Quarter

Let us check the quarter and the semester in which the course starts.



course_start
## [1] "2017-04-12"
quarter(course_start)
## [1] 2
quarter(course_start, with_year = TRUE)
## [1] 2017.2
semester(course_start)  
## [1] 1

Let us count the invoices due for each quarter.

transact %>%
  mutate(
    quarter_due = quarter(Due)
  ) %>%
  count(quarter_due)
## # A tibble: 4 x 2
##   quarter_due     n
##         <int> <int>
## 1           1   521
## 2           2   661
## 3           3   618
## 4           4   666
transact %>%
  mutate(
    Quarter = quarter(Due, with_year = TRUE)
  )
## # A tibble: 2,466 x 4
##    Invoice    Due        Payment    Quarter
##    <date>     <date>     <date>       <dbl>
##  1 2013-01-02 2013-02-01 2013-01-15   2013.
##  2 2013-01-26 2013-02-25 2013-03-03   2013.
##  3 2013-07-03 2013-08-02 2013-07-08   2013.
##  4 2013-02-10 2013-03-12 2013-03-17   2013.
##  5 2012-10-25 2012-11-24 2012-11-28   2012.
##  6 2012-01-27 2012-02-26 2012-02-22   2012.
##  7 2013-08-13 2013-09-12 2013-09-09   2013.
##  8 2012-12-16 2013-01-15 2013-01-12   2013.
##  9 2012-05-14 2012-06-13 2012-07-01   2012.
## 10 2013-07-01 2013-07-31 2013-07-26   2013.
## # ... with 2,456 more rows

Case Study

Let us also get the course interval in different units.


course_interval / dseconds()
## [1] 777600
course_interval / dminutes()
## [1] 12960
course_interval / dhours()
## [1] 216
course_interval / dweeks()
## [1] 1.285714
course_interval / dyears()
## [1] 0.02465753

We can use time_length() to get the course interval in different units.



time_length(course_interval, unit = "seconds")
## [1] 777600
time_length(course_interval, unit = "minutes")
## [1] 12960
time_length(course_interval, unit = "hours")
## [1] 216

as.period() is another way to get the course interval in different units.



as.period(course_interval, unit = "seconds")
## [1] "777600S"
as.period(course_interval, unit = "minutes")
## [1] "12960M 0S"
as.period(course_interval, unit = "hours")
## [1] "216H 0M 0S"

To leave a comment for the author, please follow the link and comment on their blog: Rsquared Academy Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)