Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The recommended way to figure out the best parameters to use in stacks for denovo RAD-seq analysis is to test parameter combinations for M and n. (Paris et al. 2017, Rochette and Catchen 2017).
The authors of stacks recommend testing M and n from 1 to 9 and then visualizing the distribution of loci against the number of SNPs on the loci.
stacks provides a script to extract distributions using stacks-dist-extract
but you will have to run it repeatedly by hand for every parameter.
Here is a bash script with a loop to extract the distribution of SNPs for each parameter combination and a R script to visualize the distributions in R similar to Rocheete and Catchen’s figure.
In this script, it is assumed that folder names follow Rochette and Catchen’s protocol (stacks.M1, stacks.M2 etc)
Home +-- stacks.M1 | +-- populations.r80 | +-- populations.log | +-- populations.log.distribs | +-- ind.1.alleles.tsv.gz | +-- ind.1.matches.bam | +-- ind.1.snps.tsv.gz | +-- ind.1.tags.tsv.gz | ... |-- stacks.M2 |-- stacks.M3 |-- stacks.M4 ... #!/bin/bash # load stacks for those who are on clusters, this is for SLURM module load stacks/2.0b # change the numbers in the next line to match the directory values for i in 1 2 3 4 5 6 7 8 9 do stacks-dist-extract stacks.M${i}/populations.r80/populations.log.distribs snps_per_loc_postfilters > ${i}_snp_distribution.tsv done
There is also a pure awk
solution not involving stacks scripts.
#!/bin/bash # load stacks for those who are on clusters, this is for SLURM module load stacks/2.0b for i in 1 2 3 4 5 6 7 8 9 do awk '/snps_per_loc_postfilters/{flag=1; next} /END/{flag=0} flag' stacks.M${i}/populations.r80/populations.log.distribs > ${i}_snp_distribution.tsv done
Then in R, make a data frame combining all parameter distributions before visualizaing in ggplot2
. Here, the data comes from a GBS analysis of garlic mustard (Alliaria petiolata).
count <- 1 files <- list.files(path = "", pattern="*_snp_distribution.tsv", full.names = T) for (i in files[1:9]){ table <- read.delim(i, skip=1, header=T) table$n_loci_percent<- table$n_loci/sum(table$n_loci) table$m<- count write.table(table, "distributions.tsv", append=T, row.names=F, col.names = F) snp_count <- data.frame("m"= count, "n_snps"=sum(table$n_loci)) write.table(snp_count, "total_count.tsv", append=T, row.names=F, col.names = F) count <- count + 1 }
total_count.tsv
is used to display total SNP by parameter.
library(ggplot2) snp_count<-read.delim("total_count.tsv", sep=" ", header=F) names(snp_count)<-c("m", "n_snps") snp_count$m<-as.factor(snp_count$m) p<-ggplot(data=snp_count, aes(x=m, y=n_snps)) + geom_point() + theme_classic() + scale_y_continuous(limits = c(0, 3000)) p
distributions.tsv
is used to show parameter distributions.
snp_table<-read.delim("distributions.tsv", sep=" ", header=F) names(snp_table)<- c("n_snps","n_loci", "n_loci_percent", "m") snp_table$n_loci_percent<-snp_table$n_loci_percent*100 snp_table$n_snps<-ifelse(snp_table$n_snps < 9, snp_table$n_snps, "9 +") snp_table$n_snps<-as.factor(snp_table$n_snps) snp_table$m<-as.factor(snp_table$m) q<-ggplot(data = snp_table) + geom_col(aes(x=n_snps, y=n_loci_percent, fill=m), position="dodge") + theme_classic() q
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.