Update to GetLattesData

[This article was first published on Marcelo S. Perlin, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Last year I released package GetLattesData. This package is very handy for anyone that researches bibliometric data of Brazilian scholars. You could easily import the whole academic history of any researcher registered at the platform. More details in the this post.

However, a couple months ago CNPQ introduced a captcha in the webpage. This made it impossible to download the xml files directly, breaking my code. It seems that those changes are now permanent. The update to GetLattesData will address this issue by asking the user to download the files manually and input its location to function gld_get_lattes_data_from_zip. Unfortunately, one can no longer download the files by code.

Next I provide an example of usage from the vignette:

library(GetLattesData)

# get files from pkg (you can download from other researchers in lattes website)
f.in <- c(system.file('extdata/3262699324398819.zip', package = 'GetLattesData'),
          system.file('extdata/8373564643000623.zip', package = 'GetLattesData'))

# set qualis
field.qualis = 'ADMINISTRAÇÃO PÚBLICA E DE EMPRESAS, CIÊNCIAS CONTÁBEIS E TURISMO'

# get data
l.out <- gld_get_lattes_data_from_zip(f.in, 
                                      field.qualis = field.qualis )

## 
## Reading  3262699324398819.zip -  Marcelo Scherer Perlin
##  Found 21 published papers
##  Found 2 accepted paper(s)
##  Found 10 supervisions
##  Found 2 published books
##  Found 0 book chapters
##  Found 17 conference papers
## Reading  8373564643000623.zip -  Denis Borenstein
##  Found 75 published papers
##  Found 2 accepted paper(s)
##  Found 97 supervisions
##  Found 1 published books
##  Found 6 book chapters
##  Found 89 conference papers

The output my.l is a list with the following dataframes:

names(l.out)

## [1] "tpesq"             "tpublic.published" "tpublic.accepted" 
## [4] "tsupervisions"     "tbooks"            "tconferences"

The first is a dataframe with information about researchers:

tpesq <- l.out$tpesq
str(tpesq)

## 'data.frame':    2 obs. of  9 variables:
##  $ name           : chr  "Marcelo Scherer Perlin" "Denis Borenstein"
##  $ last.update    : Date, format: "2018-09-24" "2018-08-24"
##  $ phd.institution: chr  "University of Reading" "University of Strathclyde"
##  $ phd.start.year : num  2007 1991
##  $ phd.end.year   : num  2010 1995
##  $ country.origin : chr  "Brasil" "Brasil"
##  $ major.field    : chr  "CIENCIAS_SOCIAIS_APLICADAS" "ENGENHARIAS"
##  $ minor.field    : chr  "Administração" "Engenharia de Produção"
##  $ id.file        : chr  "3262699324398819.zip" "8373564643000623.zip"

The second dataframe contains information about all published publications, including Qualis and SJR:

dplyr::glimpse(l.out$tpublic.published)

## Observations: 96
## Variables: 12
## $ id.file       <chr> "3262699324398819.zip", "3262699324398819.zip", ...
## $ name          <chr> "Marcelo Scherer Perlin", "Marcelo Scherer Perli...
## $ article.title <chr> "Teoria do Caos aplicada aos Contratos de Café n...
## $ year          <dbl> 2006, 2009, 2007, 2011, 2013, 2013, 2013, 2013, ...
## $ language      <chr> "Português", "Inglês", "Inglês", "Inglês", "Port...
## $ journal.title <chr> "READ - Revista Eletrônica da Administração (UFR...
## $ ISSN          <chr> "-", "1753-9641", "1413-2311", "1749-9135", "167...
## $ order.aut     <dbl> 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, ...
## $ n.authors     <dbl> 2, 1, 2, 2, 1, 3, 3, 3, 2, 2, 3, 2, 4, 5, 3, 2, ...
## $ qualis        <chr> NA, NA, "B1", NA, "B1", "A2", "B1", "A1", "B1", ...
## $ SJR           <dbl> NA, 0.213, NA, NA, NA, 0.886, NA, 0.429, NA, NA,...
## $ H.SJR         <int> NA, 6, NA, NA, NA, 17, NA, 38, NA, NA, NA, NA, 4...

Other dataframes in l.out included information about accepted papers, supervisions, books and conferences.

An application of GetLattesData

GetLattesData makes it easy to create academic reports for a large number of researchers. See next, where we plot the number of publications for each researcher, conditioning on Qualis ranking.

tpublic.published <- l.out$tpublic.published

library(ggplot2)

p <- ggplot(tpublic.published, aes(x = qualis)) +
  geom_bar(position = 'identity') + facet_wrap(~name) +
  labs(x = paste0('Qualis: ', field.qualis))
print(p)

We can also use dplyr to do some simple assessment of academic productivity:

library(dplyr)

## 
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
## 
##     filter, lag

## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

my.tab <- tpublic.published %>%
  group_by(name) %>%
  summarise(n.papers = n(),
            max.SJR = max(SJR, na.rm = T),
            mean.SJR = mean(SJR, na.rm = T),
            n.A1.qualis = sum(qualis == 'A1', na.rm = T),
            n.A2.qualis = sum(qualis == 'A2', na.rm = T),
            median.authorship = median(as.numeric(order.aut), na.rm = T ))

knitr::kable(my.tab)
name n.papers max.SJR mean.SJR n.A1.qualis n.A2.qualis median.authorship
Denis Borenstein 75 3.674 1.2808113 27 16 2
Marcelo Scherer Perlin 21 2.029 0.7204444 3 4 1

To leave a comment for the author, please follow the link and comment on their blog: Marcelo S. Perlin.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)