Site icon R-bloggers

New Course: Visualization Best Practices in R

[This article was first published on DataCamp Community - r programming, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Here is the course link.

Course Description

This course will help you take your data visualization skills beyond the basics and hone them into a powerful member of your data science toolkit. Over the lessons we will use two interesting open datasets to cover different types of data (proportions, point-data, single distributions, and multiple distributions) and discuss the pros and cons of the most common visualizations. In addition, we will cover some less common alternatives visualizations for the data types and how to tweak default ggplot settings to most efficiently and effectively get your message across.

Chapter 1: Proportions of a whole (Free)

In this chapter, we focus on visualizing proportions of a whole; we see that pie charts really aren’t so bad, along with discussing the waffle chart and stacked bars for comparing multiple proportions.

Chapter 2: Point data

We shift our focus now to single-observation or point data and go over when bar charts are appropriate and when they are not, what to use when they are not, and general perception-based enhancements for your charts.

Chapter 3: Single distributions

We now move on to visualizing distributional data, we expose the fragility of histograms, discuss when it is better to shift to a kernel density plots, and how to make both plots work best for your data.

Chapter 4: Comparing distributions

Finishing off we take a look at comparing multiple distributions to each other. We see why the traditional box plots are very dangerous and how to easily improve them, along with investigating when you should use more advanced alternatives like the beeswarm plot and violin plots.

Prerequisites

To leave a comment for the author, please follow the link and comment on their blog: DataCamp Community - r programming.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.