Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In the previous post (https://statcompute.wordpress.com/2018/01/28/modeling-lgd-with-proportional-odds-model), I’ve shown how to estimate a standard Cumulative Logit model with the ordinal::clm function and its use case in credit risk models. To better a better illustration of the underlying logic, an example is also provided below, showing how to estimate a Cumulative Logit model by specifying the log likelihood function.
pkgs <- list("maxLik", "VGAM") sapply(pkgs, require, character.only = T) df <- read.csv("Downloads/lgd.csv") df$lgd_cat <- ifelse(round(1 - df[2], 4) == 0, "L", ifelse(round(1 - df[2], 4) == 1, "H", "M")) ### DEFINE LOGLIKELIHOOD FUNCTION OF CUMULATIVE LOGIT MODEL ### # BELOW IS THE SIMPLER EQUIVALENT: # vglm(sapply(c("L", "M", "H"), function(x) df$lgd_cat == x) ~ LTV, data = df, family = cumulative(parallel = T)) ll01 <- function(param) { a1 <- param[1] a2 <- param[2] b1 <- param[3] xb_L <- a1 - df$LTV * b1 xb_M <- a2 - df$LTV * b1 prob_L <- exp(xb_L) / (1 + exp(xb_L)) prob_M <- exp(xb_M) / (1 + exp(xb_M)) - prob_L prob_H <- 1 - prob_M - prob_L CAT <- data.frame(sapply(c("L", "M", "H"), function(x) assign(x, df$lgd_cat == x))) LH <- with(CAT, (prob_L ^ L) * (prob_M ^ M) * (prob_H ^ H)) return(sum(log(LH))) }
Instead of modeling the cumulative probability of each ordered category such that Log(Prob <= Y_i / (1 – Prob <= Y_i)) = Alpha_i – XB, we could also have alternative ways to estimate the categorical probabilities by using Adjacent-Categories Logit and Continuation-Ratio Logit models.
In an Adjacent-Categories Logit model, the functional form can be expressed as Log(Prob = Y_i / Prob = Y_j) = Alpha_i – XB with j = i + 1. The corresponding log likelihood function is given in the code snippet below.
### DEFINE LOGLIKELIHOOD FUNCTION OF ADJACENT-CATEGORIES LOGIT MODEL ### # BELOW IS THE SIMPLER EQUIVALENT: # vglm(sapply(c("L", "M", "H"), function(x) df$lgd_cat == x) ~ LTV, data = df, family = acat(parallel = T, reverse = T)) ll02 <- function(param) { a1 <- param[1] a2 <- param[2] b1 <- param[3] xb_L <- a1 - df$LTV * b1 xb_M <- a2 - df$LTV * b1 prob_H <- 1 / (1 + exp(xb_M) + exp(xb_M + xb_L)) prob_M <- exp(xb_M) * prob_H prob_L <- 1 - prob_H - prob_M CAT <- data.frame(sapply(c("L", "M", "H"), function(x) assign(x, df$lgd_cat == x))) LH <- with(CAT, (prob_L ^ L) * (prob_M ^ M) * (prob_H ^ H)) return(sum(log(LH))) }
If we take the probability (Prob = Y_i) from the Adjacent-Categories Logit and the probability (Prob > Y_i) from the Cumulative Logit, then we can have the functional form of a Continuation-Ratio Logit model, expressed as Log(Prob = Y_i / Prob > Y_i) = Alpha_i – XB. The log likelihood function is also provided.
### DEFINE LOGLIKELIHOOD FUNCTION OF CONTINUATION-RATIO LOGIT MODEL ### # BELOW IS THE SIMPLER EQUIVALENT: # vglm(sapply(c("L", "M", "H"), function(x) df$lgd_cat == x) ~ LTV, data = df, family = cratio(parallel = T, reverse = F)) ll03 <- function(param) { a1 <- param[1] a2 <- param[2] b1 <- param[3] xb_L <- a1 - df$LTV * b1 xb_M <- a2 - df$LTV * b1 prob_L <- 1 / (1 + exp(-xb_L)) prob_M <- 1 / (1 + exp(-xb_M)) * (1 - prob_L) prob_H <- 1 - prob_L - prob_M CAT <- data.frame(sapply(c("L", "M", "H"), function(x) assign(x, df$lgd_cat == x))) LH <- with(CAT, (prob_L ^ L) * (prob_M ^ M) * (prob_H ^ H)) return(sum(log(LH))) }
After specifying log likelihood functions for aforementioned models, we can use the maxLik::maxLik() function to calculate parameter estimates. It is also shown that, in this particular example, the Cumulative Logit is slightly better than the other alternatives in terms of AIC.
# start = c(a1 = 0.1, a2 = 0.2, b1 = 1.0) # lapply(list(ll01, ll02, ll03), (function(x) summary(maxLik(x, start = start)))) [[1]] -------------------------------------------- Estimates: Estimate Std. error t value Pr(t) a1 0.38134 0.08578 4.446 8.76e-06 *** a2 4.50145 0.14251 31.587 < 2e-16 *** b1 2.07768 0.12506 16.613 < 2e-16 *** -------------------------------------------- [[2]] -------------------------------------------- Estimates: Estimate Std. error t value Pr(t) a1 0.32611 0.08106 4.023 5.74e-05 *** a2 4.05859 0.14827 27.373 < 2e-16 *** b1 1.88466 0.11942 15.781 < 2e-16 *** -------------------------------------------- [[3]] -------------------------------------------- Estimates: Estimate Std. error t value Pr(t) a1 0.30830 0.08506 3.625 0.000289 *** a2 4.14021 0.15024 27.558 < 2e-16 *** b1 1.95643 0.12444 15.722 < 2e-16 *** -------------------------------------------- # sapply(list(ll01, ll02, ll03), (function(x) AIC(maxLik(x, start = start)))) 3764.110 3767.415 3771.373
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.