[This article was first published on R – NIMBLE, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
We’ve released the newest version of NIMBLE on CRAN and on our website.
Version 0.6-11 has important new features, notably support for Bayesian nonparametric mixture modeling, and more are on the way in the next few months.
New features include:
- support for Bayesian nonparametric mixture modeling using Dirichlet process mixtures, with specialized MCMC samplers automatically assigned in NIMBLE’s default MCMC (See Chapter 10 of the manual for details);
- additional resampling methods available with the auxiliary and bootstrap particle filters;
- user-defined filtering algorithms can be used with NIMBLE’s particle MCMC samplers;
- MCMC thinning intervals can be modified at MCMC run-time;
- both runMCMC() and nimbleMCMC() now drop burn-in samples before thinning, making their behavior consistent with each other;
- increased functionality for the ‘setSeed’ argument in nimbleMCMC() and runMCMC();
- new functionality for specifying the order in which sampler functions are executed in an MCMC; and
- invalid dynamic indexes now result in a warning and NaN values but do not cause execution to error out, allowing MCMC sampling to continue.
Please see the NEWS file in the installed package for more details
To leave a comment for the author, please follow the link and comment on their blog: R – NIMBLE.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.