Sketchnotes from TWiML&AI: Practical Deep Learning with Rachel Thomas
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
These are my sketchnotes for Sam Charrington’s podcast This Week in Machine Learning and AI about Practical Deep Learning with Rachel Thomas:
You can listen to the podcast here.
In this episode, i’m joined by Rachel Thomas, founder and researcher at Fast AI. If you’re not familiar with Fast AI, the company offers a series of courses including Practical Deep Learning for Coders, Cutting Edge Deep Learning for Coders and Rachel’s Computational Linear Algebra course. The courses are designed to make deep learning more accessible to those without the extensive math backgrounds some other courses assume. Rachel and I cover a lot of ground in this conversation, starting with the philosophy and goals behind the Fast AI courses. We also cover Fast AI’s recent decision to switch to their courses from Tensorflow to Pytorch, the reasons for this, and the lessons they’ve learned in the process. We discuss the role of the Fast AI deep learning library as well, and how it was recently used to held their team achieve top results on a popular industry benchmark of training time and training cost by a factor of more than ten. https://twimlai.com/twiml-talk-138-practical-deep-learning-with-rachel-thomas/
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.