Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
After my series of post on classification algorithms, it’s time to get back to R codes, this time for quantile regression. Yes, I still want to get a better understanding of optimization routines, in R. Before looking at the quantile regression, let us compute the median, or the quantile, from a sample.
Median
Consider a sample \(\{y_1,\cdots,y_n\}\). To compute the median, solve\(\min_\mu \left\lbrace\sum_{i=1}^n|y_i-\mu|\right\rbrace\)which can be solved using linear programming techniques. More precisely, this problem is equivalent to\(\min_{\mu,\mathbf{a},\mathbf{b}}\left\lbrace\sum_{i=1}^na_i+b_i\right\rbrace\)with \(a_i,b_i\geq 0\) and \(y_i-\mu=a_i-b_i\), \(\forall i=1,\cdots,n\).
To illustrate, consider a sample from a lognormal distribution,
n = 101 set.seed(1) y = rlnorm(n) median(y) [1] 1.077415
For the optimization problem, use the matrix form, with \(3n\) constraints, and \(2n+1\) parameters,
library(lpSolve) A1 = cbind(diag(2*n),0) A2 = cbind(diag(n), -diag(n), 1) r = lp("min", c(rep(1,2*n),0), rbind(A1, A2),c(rep(">=", 2*n), rep("=", n)), c(rep(0,2*n), y)) tail(r$solution,1) [1] 1.077415
It looks like it’s working well…
Quantile
Of course, we can adapt our previous code for quantiles
tau = .3 quantile(x,tau) 30% 0.6741586
The linear program is now\(\min_{\mu,\mathbf{a},\mathbf{b}}\left\lbrace\sum_{i=1}^n\tau a_i+(1-\tau)b_i\right\rbrace\)with \(a_i,b_i\geq 0\) and \(y_i-\mu=a_i-b_i\), \(\forall i=1,\cdots,n\). The R code is now
A1 = cbind(diag(2*n),0) A2 = cbind(diag(n), -diag(n), 1) r = lp("min", c(rep(tau,n),rep(1-tau,n),0), rbind(A1, A2),c(rep(">=", 2*n), rep("=", n)), c(rep(0,2*n), y)) tail(r$solution,1) [1] 0.6741586
So far so good…
Quantile Regression (simple)
Consider the following dataset, with rents of flat, in a major German city, as function of the surface, the year of construction, etc.
base=read.table("http://freakonometrics.free.fr/rent98_00.txt",header=TRUE)
The linear program for the quantile regression is now\(\min_{\mu,\mathbf{a},\mathbf{b}}\left\lbrace\sum_{i=1}^n\tau a_i+(1-\tau)b_i\right\rbrace\)with \(a_i,b_i\geq 0\) and \(y_i-[\beta_0^\tau+\beta_1^\tau x_i]=a_i-b_i\)\(\forall i=1,\cdots,n\). So use here
require(lpSolve) tau = .3 n=nrow(base) X = cbind( 1, base$area) y = base$rent_euro A1 = cbind(diag(2*n), 0,0) A2 = cbind(diag(n), -diag(n), X) r = lp("min", c(rep(tau,n), rep(1-tau,n),0,0), rbind(A1, A2), c(rep(">=", 2*n), rep("=", n)), c(rep(0,2*n), y)) tail(r$solution,2) [1] 148.946864 3.289674
Of course, we can use R function to fit that model
library(quantreg) rq(rent_euro~area, tau=tau, data=base) Coefficients: (Intercept) area 148.946864 3.289674
Here again, it seems to work quite well. We can use a different probability level, of course, and get a plot
plot(base$area,base$rent_euro,xlab=expression(paste("surface (",m^2,")")), ylab="rent (euros/month)",col=rgb(0,0,1,.4),cex=.5) sf=0:250 yr=r$solution[2*n+1]+r$solution[2*n+2]*sf lines(sf,yr,lwd=2,col="blue") tau = .9 r = lp("min", c(rep(tau,n), rep(1-tau,n),0,0), rbind(A1, A2), c(rep(">=", 2*n), rep("=", n)), c(rep(0,2*n), y)) tail(r$solution,2) [1] 121.815505 7.865536 yr=r$solution[2*n+1]+r$solution[2*n+2]*sf lines(sf,yr,lwd=2,col="blue")
Quantile Regression (multiple)
Now that we understand how to run the optimization program with one covariate, why not try with two ? For instance, let us see if we can explain the rent of a flat as a (linear) function of the surface and the age of the building.
require(lpSolve) tau = .3 n=nrow(base) X = cbind( 1, base$area, base$yearc ) y = base$rent_euro A1 = cbind(diag(2*n), 0,0,0) A2 = cbind(diag(n), -diag(n), X) r = lp("min", c(rep(tau,n), rep(1-tau,n),0,0,0), rbind(A1, A2), c(rep(">=", 2*n), rep("=", n)), c(rep(0,2*n), y)) tail(r$solution,3) [1] 0.000000 3.257562 0.077501
Unfortunately, this time, it is not working well…
library(quantreg) rq(rent_euro~area+yearc, tau=tau, data=base) Coefficients: (Intercept) area yearc -5542.503252 3.978135 2.887234
Results are quite different. And actually, another technique can confirm the later (IRLS – Iteratively Reweighted Least Squares)
eps = residuals(lm(rent_euro~area+yearc, data=base)) for(s in 1:500){ reg = lm(rent_euro~area+yearc, data=base, weights=(tau*(eps>0)+(1-tau)*(eps<0))/abs(eps)) eps = residuals(reg) } reg$coefficients (Intercept) area yearc -5484.443043 3.955134 2.857943
I could not figure out what went wrong with the linear program. Not only coefficients are very different, but also predictions…
yr = r$solution[2*n+1]+r$solution[2*n+2]*base$area+r$solution[2*n+3]*base$yearc plot(predict(reg),yr) abline(a=0,b=1,lty=2,col="red")
It’s now time to investigate….
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.