[This article was first published on Deeply Trivial, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I’m currently out of town and not spending as much time on my computer as I have over the last couple months. (It’s what happens when you’re the only one in your department at work and also most of your hobbies involve a computer.) But I wanted to write up something for Statistics Sunday and I recently discovered two R packages I need to check out in the near future.Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The first is called echor, which allows you to search and download data directly from the US Environmental Protection Agency (EPA) Environmental Compliance and History Online (ECHO), using the ECHO-API. According to the vignette, linked above, “ECHO provides data for:
- Stationary sources permitted under the Clean Air Act, including data from the National Emissions Inventory, Greenhouse Gas Reporting Program, Toxics Release Inventory, and Clean Air Markets Division Acid Rain Program and Clean Air Interstate Rule.
- Public drinking water systems permitted under the Safe Drinking Water Act, including data from the Safe Drinking Water Information System.
- Hazardous Waste Handlers permitted under the Resource Conservation and Recovery Act, with data drawn from the RCRAInfo data system.
- Facilities permitted under the Clean Water Act and the National Pollutant Discharge Elimination Systems (NPDES) program, including data from EPA’s ICIS-NPDES system and possibly waterbody information from EPA’s ATTAINS data system.”
The second package is papaja, or Preparing APA Journal Articles, which uses RStudio and R Markdown to create APA-formatted papers. Back when I wrote APA style papers regularly, I had Word styles set up to automatically format headers and subheaders, but properly formatting tables and charts was another story. This package promises to do all of that. It’s still in development, but you can find out more about it here and here.
I have some fun analysis projects in the works! Stay tuned.
I have some fun analysis projects in the works! Stay tuned.
To leave a comment for the author, please follow the link and comment on their blog: Deeply Trivial.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.