Site icon R-bloggers

Data on energy consumption and CO2 emissions

[This article was first published on Economics and R - R posts, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I like to start my courses in energy economics and environmental economics by asking some question like

Which energy source, e.g. gas, coal, nuclear, oil, renewables had the largest absolute increase in world wide energy consumption between the years 2000 und 2016?

And then show some data. Below you can see an updated version of a googleVis visualization of primary energy consumption of different sources for selected world regions (You need to install and activate the flash player plugin to see the figures.)

< !-- MotionChart generated in R 3.3.2 by googleVis 0.6.2 package --> < !-- Tue Apr 03 11:12:26 2018 --> < !-- jsHeader --> < !-- jsChart --> < !-- divChart -->

Units are MTOE (Million Tonnes of Oil Equivalent).

The data was collected from the BP Statistical Review of World Energy 2017. I converted the data from several sheets of the large excel file into a format more amenable for data analysis. You can download the transformed data and take a look at the conversion script in R here: https://github.com/skranz/bpdata

You can find some more visualizations of energy and enviornmental data here: http://econ.mathematik.uni-ulm.de/datablog/

Alternatively, if you want to learn about diverse economic data in quiz form, you can take a look at my data quiz: http://skranz.github.io//r/2017/10/23/Dataquiz.html

But let me show you one more visualization that allows you to compare CO2 emissions and total energy usage for different world regions:

< !-- MotionChart generated in R 3.3.2 by googleVis 0.6.2 package --> < !-- Tue Apr 03 11:12:27 2018 --> < !-- jsHeader -->

To leave a comment for the author, please follow the link and comment on their blog: Economics and R - R posts.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.