[This article was first published on R – rud.is, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The fs
package makes it super quick and easy to find out just how much “package hoarding” you’ve been doing:
library(fs) library(ggalt) # devtools::install_github("hrbrmstr/ggalt") library(igraph) library(ggraph) # devtools::install_github("thomasp85/igraph") library(hrbrthemes) # devtools::install_github("hrbrmstr/hrbrthemes") library(tidyverse) installed.packages() %>% as_data_frame() %>% mutate(pkg_dir = sprintf("%s/%s", LibPath, Package)) %>% select(pkg_dir) %>% mutate(pkg_dir_size = map_dbl(pkg_dir, ~{ fs::dir_info(.x, all=TRUE, recursive=TRUE) %>% summarise(tot_dir_size = sum(size)) %>% pull(tot_dir_size) })) %>% summarise( total_size_of_all_installed_packages=ggalt::Gb(sum(pkg_dir_size)) ) %>% unlist() ## total_size_of_all_installed_packages ## "1.6 Gb"
While you can modify the above and peruse the list of packages/directories in tabular format or programmatically, you can also do a bit more work to get a visual overview of package size (click/tap the image for a larger view):
installed.packages() %>% as_data_frame() %>% mutate(pkg_dir = sprintf("%s/%s", LibPath, Package)) %>% mutate(dir_info = map(pkg_dir, fs::dir_info, all=TRUE, recursive=TRUE)) %>% mutate(dir_size = map_dbl(dir_info, ~sum(.x$size))) -> xdf select(xdf, Package, dir_size) %>% mutate(grp = "ROOT") %>% add_row(grp = "ROOT", Package="ROOT", dir_size=0) %>% select(grp, Package, dir_size) %>% arrange(desc(dir_size)) -> gdf select(gdf, -grp) %>% mutate(lab = sprintf("%s\n(%s)", Package, ggalt::Mb(dir_size))) %>% mutate(lab = ifelse(dir_size > 1500000, lab, "")) -> vdf g <- graph_from_data_frame(gdf, vertices=vdf) ggraph(g, "treemap", weight=dir_size) + geom_node_tile(fill="lightslategray", size=0.25) + geom_text( aes(x, y, label=lab, size=dir_size), color="#cccccc", family=_ps, lineheight=0.875 ) + scale_x_reverse(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + scale_size_continuous(trans="sqrt", range = c(0.5, 8)) + ggraph::theme_graph(base_family = _ps) + theme(legend.position="none")
Challenge
Do some wrangling with the above data and turn it into a package “disk explorer” with @timelyportfolio’s d3treeR
To leave a comment for the author, please follow the link and comment on their blog: R – rud.is.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.