Site icon R-bloggers

Exploring influence in networks

[This article was first published on R on Tea & Stats, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I have just published an interactive graphic showing the effect of ranking scientific communities with pairwise comparison models. The visualisation is an interactive version of my (award-winning) useR!2017 poster, Ranking influential communities in networks.

You can see how academic journals have been grouped into communities based on their citation behaviour, and notice the relative ranking within and between fields. Occasionally journals don’t do so well within their field but are influential outside it, and vice versa. Have an explore and see how your favourite fields/journals fare!

Some interesting feedback so far from domain experts:

Other observations:

The analysis was done using R and the visualisation created using D3.

I am not very good at coming up with names for algorithmically-generated fields, so if you can think of more appropriate labels for communities, do let me know. Feedback is very welcome!

Click here to view the visualisation.

To leave a comment for the author, please follow the link and comment on their blog: R on Tea & Stats.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.