Site icon R-bloggers

R Package Install Troubleshooting

[This article was first published on Little Miss Data, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

One of the reasons why I love R is that I feel like I’m constantly finding out about cool new packages through an ever-growing community of users and teachers. 

To understand the current state of R packages on CRAN, I ran some code provided by Gergely Daróczi on Github .  As of today there have been almost 14,000 R packages published on CRAN and the rate of publishing appears to be growing at an almost exponential trend.  Additionally, there are even more packages available on sources like Github, Bioconductor, Bitbucket and more. 

   

Last week, I was heading out on  a trip.  I excitedly planned my air time to do some fun new R tutorials.  The night before the flight I attempted to install all required packages or files so that I wasn’t struggling with slow plane wifi.  Unfortunately the following packages kept giving me install issues: quanteda, magrittr and emo.  As per usual, I executed the install.packages() command to install the packages.

install.packages("magittr")
install.packages("emo")
install.packages("quanteda")

I recieved the following sad warnings:

Warning in install.packages :

  package ‘magittr’ is not available (for R version 3.3.3)

Warning in install.packages :

  package ‘emo’ is not available (for R version 3.3.3)

Warning in install.packages :

  package ‘quanteda’ is not available (for R version 3.3.3)

R- why are you making me think?

Why?  Why is my loving R betraying me and making me overthink the install of some packages?  It’s 11 at night before my early AM flight.  I really do NOT want to be reading through stack overflow for package install troubleshooting help at the moment.  Adding insult to injury, the warning messages are not super helpful.

I know it’s lazy, but given how many tools us data people use every day I feel like we shouldn’t have to think very hard about installing packages.  We should be thinking about the data and analysis.  

 

A Cry for help

So I haphazardedly try a bunch of stuff, nothing works and I have a lightbulb moment!  The lovely women at R-Ladies Austin were just telling me that if I ask a help question on twitter with the #rstats tag someone may take pity on me and answer.  Having nothing to loose I give it a shot and luckily as I slept the help piled in! 

So what did I do wrong?  Well umm.. what didn’t I do wrong?  I had the wrong version of R for one package, I made a typo on another and I was trying to install a package from CRAN that was on github only.  This all seems pretty silly, but how would I guess these mistakes from the error messages above?  And the more important question is how can I pay forward the help I got to prevent others from making the same mistakes?


Approaching package issues systematically

To help other poor souls that don’t want to think too hard when struggling to install packages referenced in tutorials or other media, I’ve put together a simple flow chart.  The basic troubleshooting guide can be followed in the flow chart. However additional detailed instructions and links can be found below the image.  

   

 

Additional instructions for Package Install troubleshooting flow chart

Is the package available on CRAN? 

Do you have the right version of base R? 

   

Did the install work?

Install via R-Studio package interface

   

Locate the package repo and install via devtools

install.packages("devtools")
library(devtools)
install_github("hadley/emo")
# OR MAC and Linux users can simply do:
# devtools::install_github("hadley/emo")

 

Thank you

Thank you for taking the time to read this guide.  I certainly hope that it will help people spend less time thinking about package install debugging and leave more time for fun data analysis and exploration.  Please feel free to let me know your thoughts in the comments or on twitter.  Thanks!

Written by Laura Ellis

To leave a comment for the author, please follow the link and comment on their blog: Little Miss Data.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.