simmer.bricks 0.1.0: new add-on for simmer

[This article was first published on R – Enchufa2, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The new package simmer.bricks has found its way to CRAN. The simmer package provides a rich and flexible API to build discrete-event simulations. However, there are certain recurring patterns that are typed over and over again, higher-level tasks which can be conceptualised in concrete activity sequences. This new package is intended to capture this kind of patterns into usable bricks, i.e., methods that can be used as simmer activities, but return an arrangement of activities implementing higher-level tasks.

For instance, consider an entity visiting a resource:

library(simmer)

trajectory("customer") %>%
  seize("clerk") %>%
  timeout(10) %>%
  release("clerk")
## trajectory: customer, 3 activities
## { Activity: Seize        | resource: clerk, amount: 1 }
## { Activity: Timeout      | delay: 10 }
## { Activity: Release      | resource: clerk, amount: 1 }

The simmer.bricks package wraps this pattern into the visit() brick:

library(simmer.bricks)

trajectory("customer") %>%
  visit("clerk", 10)
## trajectory: customer, 3 activities
## { Activity: Seize        | resource: clerk, amount: 1 }
## { Activity: Timeout      | delay: 10 }
## { Activity: Release      | resource: clerk, amount: 1 }

This is a very naive example though. As a more compelling use case, consider a resource that becomes inoperative for some time after each release; i.e., the clerk above needs to do some paperwork after each customer leaves. There are several ways of programming this with simmer. The most compact implementation requires a clone() activity to let a clone hold the resource for some more time while the original entity continues its way. This package encapsulates all this logic in a very easy-to-use brick called delayed_release():

env <- simmer()

customer <- trajectory("customer") %>%
  log_("waiting") %>%
  seize("clerk") %>%
  log_("being attended") %>%
  timeout(10) %>%
  # inoperative for 5 units of time
  delayed_release(env, "clerk", 5) %>%
  log_("leaving")

env %>%
  add_resource("clerk") %>%
  add_generator("customer", customer, at(0, 1)) %>%
  run() %>% invisible
## 0: customer0: waiting
## 0: customer0: being attended
## 1: customer1: waiting
## 10: customer0: leaving
## 15: customer1: being attended
## 25: customer1: leaving

The reference index lists all the available bricks included in this inital release. The examples included in the help page for each method show the equivalence in plain activities. This is very important if you want to mix bricks with rollbacks to produce loops, since the rollback() activity works in terms of the number of activities. For instance, this is what a delayed_release() does behind the scenes:

customer
## trajectory: customer, 11 activities
## { Activity: Log          | message }
## { Activity: Seize        | resource: clerk, amount: 1 }
## { Activity: Log          | message }
## { Activity: Timeout      | delay: 10 }
## { Activity: Clone        | n: 2 }
##   Fork 1, continue,  trajectory: anonymous, 2 activities
##   { Activity: SetCapacity  | resource: clerk, value: 0x55a7c5b524c0 }
##   { Activity: Release      | resource: clerk, amount: 1 }
##   Fork 2, continue,  trajectory: anonymous, 2 activities
##   { Activity: Timeout      | delay: 5 }
##   { Activity: SetCapacity  | resource: clerk, value: 0x55a7c59ddc18 }
## { Activity: Synchronize  | wait: 0 }
## { Activity: Log          | message }

As always, we are more than happy to receive feedback and suggestions, either via the mailing list or via GitHub issues and PRs. If you identify any pattern that you frequently use in your simulations and you think it could become a useful simmer brick, please don’t hesitate to share it!

Article originally published in Enchufa2.es: simmer.bricks 0.1.0: new add-on for simmer.

To leave a comment for the author, please follow the link and comment on their blog: R – Enchufa2.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)