Site icon R-bloggers

BAMLSS paper published in JCGS

[This article was first published on Achim Zeileis, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Bayesian additive models for location, scale, and shape (and beyond) provide a general framework for distributional regression. Accompanied by the R package bamlss.

Citation

Nikolaus Umlauf, Nadja Klein, Achim Zeileis (2018). “BAMLSS: Bayesian Additive Models for Location, Scale and Shape (and Beyond).” Journal of Computational and Graphical Statistics. Forthcoming. doi:10.1080/10618600.2017.1407325pdf ]

Abstract

Bayesian analysis provides a convenient setting for the estimation of complex generalized additive regression models (GAMs). Since computational power has tremendously increased in the past decade it is now possible to tackle complicated inferential problems, e.g., with Markov chain Monte Carlo simulation, on virtually any modern computer. This is one of the reasons why Bayesian methods have become increasingly popular, leading to a number of highly specialized and optimized estimation engines and with attention shifting from conditional mean models to probabilistic distributional models capturing location, scale, shape (and other aspects) of the response distribution. In order to embed many different approaches suggested in literature and software, a unified modeling architecture for distributional GAMs is established that exploits distributions, estimation techniques (posterior mode or posterior mean), and model terms (fixed, random, smooth, spatial, …). It is shown that within this framework implementing algorithms for complex regression problems, as well as the integration of already existing software, is relatively straightforward. The usefulness is emphasized with two complex and computationally demanding application case studies: a large daily precipitation climatology, as well as a Cox model for continuous time with space-time interactions.

Software

https://CRAN.R-project.org/package=bamlss

Illustration

Censored heteroscedastic precepitation climatology, with spatially-varying seasonal effects, spatial main effects, and predicted average precipitation for target date.

To leave a comment for the author, please follow the link and comment on their blog: Achim Zeileis.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.