Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Earlier today Rcpp passed 1250 reverse-dependencies on CRAN as another big milestone. The graph is on the left depicts the growth of Rcpp usage (as measured by Depends, Imports and LinkingTo, but excluding Suggests) over time.
Rcpp cleared 300 packages in November 2014. It passed 400 packages in June 2015 (when I only tweeted about it), 500 packages in late October 2015, 600 packages last March, 700 packages last July, 800 packages last October, 900 packages early January, and 1000 packages in April. The chart extends to the very beginning via manually compiled data from CRANberries and checked with crandb. The next part uses manually saved entries. The core (and by far largest) part of the data set was generated semi-automatically via a short script appending updates to a small file-based backend. A list of packages using Rcpp is kept on this page.
Also displayed in the graph is the relative proportion of CRAN packages using Rcpp. The four per-cent hurdle was cleared just before useR! 2014 where I showed a similar graph (as two distinct graphs) in my invited talk. We passed five percent in December of 2014, six percent July of 2015, seven percent just before Christmas 2015, eight percent last summer, nine percent mid-December 2016 and then cracked ten percent this summer.
1250 user packages is staggering. We can use the progression of CRAN itself compiled by Henrik in a series of posts and emails to the main development mailing list. A decade ago CRAN itself did not have 1250 packages, and here we are approaching 12k with Rcpp at 10% and growing steadily. Amazeballs.
This puts a whole lot of responsibility on us in the Rcpp team as we continue to keep Rcpp as performant and reliable as it has been.
And with that, and as always, a very big Thank You! to all users and contributors of Rcpp for help, suggestions, bug reports, documentation or, of course, code.
This post by Dirk Eddelbuettel originated on his Thinking inside the box blog. Please report excessive re-aggregation in third-party for-profit settings.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.