Time series shootout: ARIMA vs. LSTM (talk)
[This article was first published on R – recurrent null, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Yesterday, the Munich datageeks Data Day took place. It was a totally fun event – great to see how much is going on, data-science-wise, in and around Munich, and how many people are interested in the topic! (By the way, I think that more than half the talks were about deep learning!)
I also had a talk, “Time series shootout: ARIMA vs. LSTM” (slides on RPubs, github).
Whatever the title, it was really about showing a systematic comparison of forecasting using ARIMA and LSTM, on synthetic as well as real datasets. I find it amazing how little is needed to get a very decent result with LSTM – how little data, how little hyperparameter tuning, how few training epochs.
Of course, it gets most interesting when we look at datasets where ARIMA has problems, as with multiple seasonality. I have such an example in the talk (in fact, it’s the main climax ;-)), but it’s definitely also an interesting direction for further experiments.
Thanks for reading!
To leave a comment for the author, please follow the link and comment on their blog: R – recurrent null.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.