Site icon R-bloggers

The Ultimate Guide To Partitioning Clustering

[This article was first published on Easy Guides, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
< !-- START HTML -->

In this first volume of symplyR, we are excited to share our Practical Guides to Partioning Clustering.

The course materials contain 3 chapters organized as follow:

K-Means Clustering Essentials

Contents:

  • K-means basic ideas
  • K-means algorithm
  • Computing k-means clustering in R
    • Data
    • Required R packages and functions: stats::kmeans()
    • Estimating the optimal number of clusters: factoextra::fviz_nbclust()
    • Computing k-means clustering
    • Accessing to the results of kmeans() function
    • Visualizing k-means clusters: factoextra::fviz_cluster()
  • K-means clustering advantages and disadvantages
  • Alternative to k-means clustering

K-Medoids Essentials: PAM clustering

Contents:

  • PAM concept
  • PAM algorithm
  • Computing PAM in R
    • Data
    • Required R packages and functions: cluster::pam() or fpc::pamk()
    • Estimating the optimal number of clusters: factoextra::fviz_nbclust()
    • Computing PAM clustering
    • Accessing to the results of the pam() function
    • Visualizing PAM clusters: factoextra::fviz_cluster()

CLARA – Clustering Large Applications

Contents:

  • CLARA concept
  • CLARA Algorithm
  • Computing CLARA in R
    • Data format and preparation
    • Required R packages and functions: cluster::clara()
    • Estimating the optimal number of clusters: factoextra::fviz_nbclust()
    • Computing CLARA
    • Visualizing CLARA clusters: factoextra::fviz_cluster()

Example of plots:


Licence:

< !--end rdoc--> < !-- END HTML -->

To leave a comment for the author, please follow the link and comment on their blog: Easy Guides.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.