Site icon R-bloggers

New R Course: Sentiment Analysis in R – The Tidy Way

[This article was first published on DataCamp Blog, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Hello, R users! This week we’re continuing to bridge the gap between computers and human language with the launch Sentiment Analysis in R: The Tidy Way by Julia Silge!

Text datasets are diverse and ubiquitous, and sentiment analysis provides an approach to understand the attitudes and opinions expressed in these texts. In this course, you will develop your text mining skills using tidy data principles. You will apply these skills by performing sentiment analysis in several case studies, on text data from Twitter to TV news to Shakespeare. These case studies will allow you to practice important data handling skills, learn about the ways sentiment analysis can be applied, and extract relevant insights from real-world data.

Take me to chapter 1!

Sentiment Analysis in R: The Tidy Way features interactive exercises that combine high-quality video, in-browser coding, and gamification for an engaging learning experience that will make you an expert in sentiment analysis!

What you’ll learn:

Chapter 1: Tweets across the United States

In this chapter, you will implement sentiment analysis using tidy data principles using geocoded Twitter data.

Chapter 2: Shakespeare gets Sentimental

Your next real-world text exploration uses tragedies and comedies by Shakespeare to show how sentiment analysis can lead to insight into differences in word use. You will learn how to transform raw text into a tidy format for further analysis.

Chapter 3: Analyzing TV News

Text analysis using tidy principles can be applied to diverse kinds of text, and in this chapter, you will explore a dataset of closed captioning from television news. You will apply the skills you have learned so far to explore how different stations report on a topic with different words, and how sentiment changes with time.

Chapter 4: Singing a Happy Song (or Sad?!)

In this final chapter on sentiment analysis using tidy principles, you will explore pop song lyrics that have topped the charts from the 1960s to today. You will apply all the techniques we have explored together so far, and use linear modeling to find what the sentiment of song lyrics can predict.

Learn all there is to know about Sentiment Analysis in R, the Tidy Way!

To leave a comment for the author, please follow the link and comment on their blog: DataCamp Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.