Programming with dplyr by using dplyr

[This article was first published on R – Enchufa2, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The title may seem tautological, but since the arrival of dplyr 0.7.x, there have been some efforts at using dplyr without actually using it that I can’t quite understand. The tidyverse has raised passions, for and against it, for some time already. There are excellent alternatives out there, and I myself use them when I find it suitable. But when I choose to use dplyr, I find it most versatile, and I see no advantage in adding yet another layer that complicates things and makes problems even harder to debug.

Take the example of seplyr. It stands for standard evaluation dplyr, and enables us to program over dplyr without having “to bring in (or study) any deep-theory or heavy-weight tools such as rlang/tidyeval”. Let’s consider the following interactive pipeline:

library(dplyr)

starwars %>%
  group_by(homeworld) %>%
  summarise(mean_height = mean(height, na.rm = TRUE),
            mean_mass = mean(mass, na.rm = TRUE),
            count = n())
## # A tibble: 49 x 4
##         homeworld mean_height mean_mass count
##             <chr>       <dbl>     <dbl> <int>
##  1       Alderaan    176.3333      64.0     3
##  2    Aleen Minor     79.0000      15.0     1
##  3         Bespin    175.0000      79.0     1
##  4     Bestine IV    180.0000     110.0     1
##  5 Cato Neimoidia    191.0000      90.0     1
##  6          Cerea    198.0000      82.0     1
##  7       Champala    196.0000       NaN     1
##  8      Chandrila    150.0000       NaN     1
##  9   Concord Dawn    183.0000      79.0     1
## 10       Corellia    175.0000      78.5     2
## # ... with 39 more rows

Let’s say we want to parametrise the grouping variable and wrap the code above into a re-usable function. Apparently, this is difficult with dplyr. But is it? Not at all: we just need to add one line and a bang-bang (!!):

starwars_mean <- function(var) {
  var <- enquo(var)
  starwars %>%
    group_by(!!var) %>%
    summarise(mean_height = mean(height, na.rm = TRUE),
            mean_mass = mean(mass, na.rm = TRUE),
            count = n())
}

starwars_mean(homeworld)
## # A tibble: 49 x 4
##         homeworld mean_height mean_mass count
##             <chr>       <dbl>     <dbl> <int>
##  1       Alderaan    176.3333      64.0     3
##  2    Aleen Minor     79.0000      15.0     1
##  3         Bespin    175.0000      79.0     1
##  4     Bestine IV    180.0000     110.0     1
##  5 Cato Neimoidia    191.0000      90.0     1
##  6          Cerea    198.0000      82.0     1
##  7       Champala    196.0000       NaN     1
##  8      Chandrila    150.0000       NaN     1
##  9   Concord Dawn    183.0000      79.0     1
## 10       Corellia    175.0000      78.5     2
## # ... with 39 more rows

The enquo() function quotes the name we put in our function (homeworld), and the bang-bang unquotes and uses that name instead of var. That’s it. What about seplyr? With seplyr, we just have to (and I quote)

  • Change dplyr verbs to their matching seplyr “*_se()” adapters.
  • Add quote marks around names and expressions.
  • Convert sequences of expressions (such as in the summarize()) to explicit vectors by adding the “c()” notation.
  • Replace “=” in expressions with “:=”.

This is the result:

library(seplyr)

starwars_mean <- function(my_var) {
  starwars %>%
    group_by_se(my_var) %>%
    summarize_se(c("mean_height" := "mean(height, na.rm = TRUE)",
                   "mean_mass" := "mean(mass, na.rm = TRUE)",
                   "count" := "n()"))
}

starwars_mean("homeworld")
## # A tibble: 49 x 4
##         homeworld mean_height mean_mass count
##             <chr>       <dbl>     <dbl> <int>
##  1       Alderaan    176.3333      64.0     3
##  2    Aleen Minor     79.0000      15.0     1
##  3         Bespin    175.0000      79.0     1
##  4     Bestine IV    180.0000     110.0     1
##  5 Cato Neimoidia    191.0000      90.0     1
##  6          Cerea    198.0000      82.0     1
##  7       Champala    196.0000       NaN     1
##  8      Chandrila    150.0000       NaN     1
##  9   Concord Dawn    183.0000      79.0     1
## 10       Corellia    175.0000      78.5     2
## # ... with 39 more rows

Basically, we had to change the entire pipeline. If re-usability was the goal, I think we lost some of it here. But, wait, we are still using non-standard evaluation in the first example. What if we really need to provide the grouping variable as a string? Easy enough, we just need to change enquo() with as.name() to convert the string to a name:

starwars_mean <- function(var) {
  var <- as.name(var)
  starwars %>%
    group_by(!!var) %>%
    summarise(mean_height = mean(height, na.rm = TRUE),
            mean_mass = mean(mass, na.rm = TRUE),
            count = n())
}

starwars_mean("homeworld")
## # A tibble: 49 x 4
##         homeworld mean_height mean_mass count
##             <chr>       <dbl>     <dbl> <int>
##  1       Alderaan    176.3333      64.0     3
##  2    Aleen Minor     79.0000      15.0     1
##  3         Bespin    175.0000      79.0     1
##  4     Bestine IV    180.0000     110.0     1
##  5 Cato Neimoidia    191.0000      90.0     1
##  6          Cerea    198.0000      82.0     1
##  7       Champala    196.0000       NaN     1
##  8      Chandrila    150.0000       NaN     1
##  9   Concord Dawn    183.0000      79.0     1
## 10       Corellia    175.0000      78.5     2
## # ... with 39 more rows

But we can do even better if we remember that dplyr provides scoped variants (see ?dplyr::scoped) for most of the verbs. In this case, group_by_at() comes in handy:

starwars_mean <- function(var) {
  starwars %>%
    group_by_at(var) %>%
    summarise(mean_height = mean(height, na.rm = TRUE),
            mean_mass = mean(mass, na.rm = TRUE),
            count = n())
}

starwars_mean("homeworld")
## # A tibble: 49 x 4
##         homeworld mean_height mean_mass count
##             <chr>       <dbl>     <dbl> <int>
##  1       Alderaan    176.3333      64.0     3
##  2    Aleen Minor     79.0000      15.0     1
##  3         Bespin    175.0000      79.0     1
##  4     Bestine IV    180.0000     110.0     1
##  5 Cato Neimoidia    191.0000      90.0     1
##  6          Cerea    198.0000      82.0     1
##  7       Champala    196.0000       NaN     1
##  8      Chandrila    150.0000       NaN     1
##  9   Concord Dawn    183.0000      79.0     1
## 10       Corellia    175.0000      78.5     2
## # ... with 39 more rows

That’s it: no bang-bang, just strings and only one change to the original code. Let’s dwell on the potential of the scoped variants with a final example. We can make a completely generic re-usable “grouped mean” function using seplyr and R’s paste0() function to build up expressions:

grouped_mean <- function(data, grouping_variables, value_variables) {
  result_names <- paste0("mean_", value_variables)
  expressions <- paste0("mean(", value_variables, ", na.rm = TRUE)")
  data %>%
    group_by_se(grouping_variables) %>%
    summarize_se(c(result_names := expressions,
                   "count" := "n()"))
}

starwars %>% 
  grouped_mean("eye_color", c("mass", "birth_year"))
## # A tibble: 15 x 4
##        eye_color mean_mass mean_birth_year count
##            <chr>     <dbl>           <dbl> <int>
##  1         black  76.28571        33.00000    10
##  2          blue  86.51667        67.06923    19
##  3     blue-gray  77.00000        57.00000     1
##  4         brown  66.09231       108.96429    21
##  5          dark       NaN             NaN     1
##  6          gold       NaN             NaN     1
##  7 green, yellow 159.00000             NaN     1
##  8         hazel  66.00000        34.50000     3
##  9        orange 282.33333       231.00000     8
## 10          pink       NaN             NaN     1
## 11           red  81.40000        33.66667     5
## 12     red, blue       NaN             NaN     1
## 13       unknown  31.50000             NaN     3
## 14         white  48.00000             NaN     1
## 15        yellow  81.11111        76.38000    11

And the same with dplyr’s scoped verbs (note that I’ve added the last rename_at() on a whim, just to get exactly the same output as before, but it is not really necessary):

grouped_mean <- function(data, grouping_variables, value_variables) {
  data %>%
    group_by_at(grouping_variables) %>%
    mutate(count = n()) %>%
    summarise_at(c(value_variables, "count"), mean, na.rm = TRUE) %>%
    rename_at(value_variables, funs(paste0("mean_", .)))
}

starwars %>% 
  grouped_mean("eye_color", c("mass", "birth_year"))
## # A tibble: 15 x 4
##        eye_color mean_mass mean_birth_year count
##            <chr>     <dbl>           <dbl> <dbl>
##  1         black  76.28571        33.00000    10
##  2          blue  86.51667        67.06923    19
##  3     blue-gray  77.00000        57.00000     1
##  4         brown  66.09231       108.96429    21
##  5          dark       NaN             NaN     1
##  6          gold       NaN             NaN     1
##  7 green, yellow 159.00000             NaN     1
##  8         hazel  66.00000        34.50000     3
##  9        orange 282.33333       231.00000     8
## 10          pink       NaN             NaN     1
## 11           red  81.40000        33.66667     5
## 12     red, blue       NaN             NaN     1
## 13       unknown  31.50000             NaN     3
## 14         white  48.00000             NaN     1
## 15        yellow  81.11111        76.38000    11

Wrapping up, the tidyeval paradigm may seem difficult at a first glance, but don’t miss the wood for the trees: the new version of dplyr is full of tools that will make your life easier, not harder.

Article originally published in Enchufa2.es: Programming with dplyr by using dplyr.

To leave a comment for the author, please follow the link and comment on their blog: R – Enchufa2.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)