Site icon R-bloggers

Machine Learning Explained: supervised learning, unsupervised learning, and reinforcement learning

[This article was first published on Enhance Data Science, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Machine learning is often split between three main types of learning: supervised learning, unsupervised learning, and reinforcement learning. Knowing the differences between these three types of learning is necessary for any data scientist.

The big picture

The type of learning is defined by the problem you want to solve and is intrinsic to the goal of your analysis:

On supervised learning

Supervised learning regroups different techniques which all share the same principles:

Some supervised learning algorithms:

Supervised learning is often used for expert systems in image recognition, speech recognition, forecasting, and in some specific business domain (Targeting, Financial analysis, ..)

On unsupervised learning

Cluster Analysis from Wikipedia

On the other hand, unsupervised learning does not use output data (at least output data that are different from the input). Unsupervised algorithms can be split into different categories:

Most of the time unsupervised learning algorithms are used to pre-process the data, during the exploratory analysis or to pre-train supervised learning algorithms.

On reinforcement learning

Reinforcement learning algorithms try to find the best ways to earn the greatest reward. Rewards can be winning a game, earning more money or beating other opponents. They present state-of-art results on very human task, for instance, this paper from the University of Toronto shows how a computer can beat human in old-school Atari video game.

Reinforcement learnings algorithms follow the different circular steps:

From Wikipedia: Reinforcement Learning

Given its and the environment’s states, the agent will choose the action which will maximize its reward or will explore a new possibility. These actions will change the environment’s and the agent states. They will also be interpreted to give a reward to the agent. By performing this loop many times, the agents will improve its behavior.

Reinforcement learning already performs wells on ‘small’ dynamic system and is definitely to follow for the years to come.

The post Machine Learning Explained: supervised learning, unsupervised learning, and reinforcement learning appeared first on Enhance Data Science.

To leave a comment for the author, please follow the link and comment on their blog: Enhance Data Science.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.