Site icon R-bloggers

Bayesian model checking via posterior predictive simulations (Bayesian p-values) with the DHARMa package

[This article was first published on Submitted to R-bloggers – theoretical ecology, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
As I said before, I’m firmly siding with Andrew Gelman (see e.g. here) in that model checking is dangerously neglected in Bayesian practice. The philosophical criticism against “rejecting” models (double-using data etc. etc.) is all well, but when using Bayesian methods in practice, I see few sensible alternatives to residual checks (both guessing a model and…

To leave a comment for the author, please follow the link and comment on their blog: Submitted to R-bloggers – theoretical ecology.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.