Site icon R-bloggers

Operations Research with R

[This article was first published on R Blog, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Stefan Feuerriegel

This blog entry concerns our course on “Operations Reserch with R” that we teach as part of our study program. We hope that the materials are of value to lectures and everyone else working in the field of numerical optimiatzion.

Course outline

The course starts with a review of numerical and linear algebra basics for optimization. Here, students learn how to derive a problem statement that is compatible with solving algorithms. This is followed by an overview on problem classes such as one and multi-dimensional problems. Starting with linear and quadratic algorithms, we also cover convex optimization, followed by non-linear approaches such as gradient based (gradient descent methods), Hessian based (Newton and quasi-Newton methods) and non-gradient based (Nelder-Mead). We finally demonstrate the potent capabilities of R for Operations Research: we show how to solve optimization problems in industry and business, as well as illustrate the use in methods for statistics and data mining (e.g. support vector machine or quantile regression). All examples are supported by appropriate visualizations.

Goals

1. Motivate to use R for operations research tasks

2. Familiarize with classes of optimization problems

3. Perform numerical optimization tasks in R using suitable packages

Motivation

R is widely taught in business courses and, hence, known by most data scientists with business background. However, when it comes to Operations Research, many other languages are used. Especially for optimization, solutions range from Microsoft Excel solvers to modeling environments such as Matlab and GAMS. Most of these are non-free and require students to learn yet another language. Because of this, we propose to use R in optimization problems of Operations Research, since R is open source, comes for free and is widely known. Furthermore, R provides a multitude of numerical optimization packages that are readily available. At the same time, R is widely used in industry, making it a suitable and skillful tool to lever the potential of numerical optimization.

Download link to the resources:
https://www.is.uni-freiburg.de/resources/computational-economics?set_language=en

To leave a comment for the author, please follow the link and comment on their blog: R Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.