Site icon R-bloggers

Hacking the principles of #openscience #workshops

[This article was first published on R – christopher lortie, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

In a previous post, I discussed the key elements that really stood out for me in recent workshops associated with open science, data science, and ecology. Summer workshop season is upon us, and here are some principles to consider that can be used to hack a workshop. These hacks can be applied a priori as an instructor or in situ as a participant or instructor by engaging with the context from a pragmatic, problem-solving perspective.

Principles

1. Embrace open pedagogy.
2. Use and current best practices from traditional teaching contexts.
3. Be learner centered.
4. Speak less, do more.
5. Solve authentic challenges.

Hacks (for each principle)

1. Prepare learning outcomes for every lesson.

2. Identify solve-a-problem opportunities in advance and be open to ones that emerge organically during the workshop.

3. Use no slide decks. This challenges the instructor to more directly engage with the students and participants in the workshop and leaves space for students to shape content and narrative to some extent. Decks lock all of us in. This is appropriate for some contexts such as conference presentations, but workshops can be more fluid and open.

4. Plan pauses. Prepare your lessons with gaps for contributions.  Prepare a list of questions to offer up for every lesson and provide time for discussion of solutions.

5. Use real evidence/data to answer a compelling question (scale can be limited, approach beta as long as an answer is provided, and the challenge can emerge if teaching is open and space provided for the workshop participants to ideate).

Final hack that is a more general teaching principle, consider keeping all teaching materials within a single ecosystem that then references outwards only as needed. For me, this has become all content prepared in RStudio, knitted to html, then pushed to GitHub gh-pages for sharing as a webpage (or site). Then participants can engage in all ideas and content including code, data, ideas in one place.

 

To leave a comment for the author, please follow the link and comment on their blog: R – christopher lortie.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.