Site icon R-bloggers

Business Science EARL SF 2017 Presentation: tidyquant, timekit, and more!

[This article was first published on business-science.io - Articles, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The EARL SF 2017 conference was just held June 5 – 7 in San Francisco, CA. There were some amazing presentations illustrating how R is truly being embraced in enterprises. We gave a three-part presentation on tidyquant for financial data science at scale, timekit for time series machine learning, and Business Science enterprise applications. We’ve uploaded the EARL presentation to YouTube. Check out the presentation, and don’t forget to check out our announcements and to follow us on social media to stay up on the latest Business Science news, events and information!

EARL 2017 Presentation

If you’re interested in financial analysis, forecasting, and business applications, check out our 30 minute presentation from EARL SF 2017! The presentation is three-in-one:

  1. Financial data science at scale with tidyquant (0:45)
  2. Time series machine learning with timekit (9:10)
  3. Enterprise applications with Business Science (23:00)

Forecasting daily CRAN downloads

One of the big areas of interest on twitter leading up to the presentation was this tweet from Hadley showing growth in daily CRAN downloads are up to 1.25M per day:

Total daily CRAN downloads for the RStudio mirror for the last 3 years. #rstats pic.twitter.com/Wo5zz3xZyc

— Hadley Wickham (@hadleywickham) June 2, 2017

…and our response showing that it’s quite possible to exceed 2M downloads per day by end of the year!

What the future may bring… pic.twitter.com/NObnNTXDcv

— Matt Dancho (@mdancho84) June 2, 2017

How we made the CRAN daily download forecast graph

Several in the #rstats community wanted to know how this forecast was made:

It turns out that it’s actually a combination (or ensemble) of four separate predictions:

  1. prophet with linear growth
  2. prophet with logistic growth
  3. timekit using a linear regression on the time series signature
  4. timekit using a spline first to track trend and then a linear regression on the augmented data frame including the times series signature and the spline

We first made a log transformation and then calculated the for separate models. The key takeaway is that individually, none of the forecasts was a silver bullet! Each had issues with either the training set or the test set. The prophet models tended to detect trend better while the timekit models tended to detect pattern better.

However, when combined via a simple average of the models, the ensemble prediction exhibited both low training and test error.

If you’d like to take a deep dive into the code, the cran_dload_prediction.R file is available for download on the Business Science GitHub site.

Download Presentation and Code on GitHub

The slide deck and code from the EARL SF 2017 presentation can be downloaded from the Business Science GitHub site.

Download the EARL SF 2017 Presentation Slides!

Announcements

Follow Business Science on Social Media

To leave a comment for the author, please follow the link and comment on their blog: business-science.io - Articles.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.