Time series prediction – with deep learning
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
More and more often, and in more and more different areas, deep learning is making its appearance in the world around us.
Many small and medium businesses, however, will probably still think – Deep Learning, that’s for Google, Facebook & co., for the guys with big data and even bigger computing power (barely resisting the temptation to write “yuge power” here).
Partly this may be true. Certainly when it comes to running through immense permutations of hyperparameter settings. The question however is if we can’t obtain good results in more usual dimensions, too – in areas where traditional methods of data science / machine learning prevail. Prevail, as of today, that is.
One such area is time series prediction, with ARIMA & co. top on the leader board. Can deep learning be a serious competitor here? In what cases? Why? Exploring this is like starting out on an unknown road, fascinated by the magical things that may await us
In any case, I’ve started walking down the road (not running!), in a rather take-your-time-and-explore-the-surroundings way. That means there’s much still to come, and it’s really just a beginning.
Here, anyway, is the travel report – the presentation slides, I mean: best viewed on RPubs, as RMarkdown on github, or downloadable as pdf).
Enjoy!
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.