Overdispersion tests in #rstats

[This article was first published on R – christopher lortie, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

A brief note on overdispersion

Assumptions

Poisson distribution assume variance is equal to the mean.

Quasi-poisson model assumes variance is a linear function of mean.

Negative binomial model assumes variance is a quadratic function of the mean.

rstats implementation

#to test you need to fit a poisson GLM then apply function to this model

library(AER)

dispersiontest(object, trafo = NULL, alternative = c(“greater”, “two.sided”, “less”))

trafo = 1 is linear testing for quasipoisson or you can fit linear equation to trafo as well

#interpretation

c = 0 equidispersion

c > 0 is overdispersed

Resources

  1. Function description from vignette for AER package.
  2. Excellent StatsExchange description of interpretation.

To leave a comment for the author, please follow the link and comment on their blog: R – christopher lortie.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)