Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I’m a fan of Chris Albon’s recent project #machinelearningflashcards on Twitter where generalized topics and methodologies are drawn out with key takeaways. It’s a great approach to sharing concepts about machine learning for everyone and a timely refresher for those of us who frequently forget algorithm basics.
I leveraged Maëlle Salmon’s recent blog post on the Faces of #rstats Twitter heavily as a tutorial for this attempt at extracting data from Twitter to download the #Machinelearningflashcards.
Source Repo for this work: jasdumas/ml-flashcards
Directions
- Load libraries:
For this project I used rtweet
to connect the Twitter API to search for relevant tweets by the hash tag, dplyr
to filter and pipe things, stringr
to clean up the tweet description, and magick
to process the images.
Note: I previously ran into trouble when downloading ImageMagick and detailed the errors and approaches, if you fall into the same trap I did: https://gist.github.com/jasdumas/29caf5a9ce0104aa6bf14183ee1e3cd8
library(rtweet) library(dplyr) library(magick) library(stringr)
- Get tweets for the hash tag and only curated tweets for Chris Albon’s work:
ml_tweets <- search_tweets("#machinelearningflashcards", n = 500, include_rts = FALSE) %>% filter(screen_name == 'chrisalbon')
head(ml_tweets)
## screen_name user_id created_at status_id ## 1 chrisalbon 11518572 2017-05-02 16:32:20 859445463316963328 ## 2 chrisalbon 11518572 2017-05-01 22:19:26 859170425921650689 ## 3 chrisalbon 11518572 2017-05-01 22:11:26 859168412555132928 ## 4 chrisalbon 11518572 2017-05-01 20:23:49 859141329879580672 ## 5 chrisalbon 11518572 2017-04-28 21:07:10 858065073167777792 ## 6 chrisalbon 11518572 2017-04-28 15:33:57 857981218754764800 ## text ## 1 Chi-squared For Feature Selection #machinelearningflashcards https://t.co/Pxxa7NDYUS ## 2 Fundamental Theorem Of Calculus #machinelearningflashcards https://t.co/0aOJMYqVFM ## 3 Why is nearest neighbor lazy #machinelearningflashcards https://t.co/vvqX39oGks ## 4 Precision Recall Tradeoff #machinelearningflashcards https://t.co/rKT1d3gD1V ## 5 Singular Value Decomposition #machinelearningflashcards https://t.co/Sahq7AWqQR ## 6 How to avoid overfitting. #machinelearningflashcards https://t.co/uUnUG7Xljv ## retweet_count favorite_count is_quote_status quote_status_id is_retweet ## 1 1 11 FALSE <NA> FALSE ## 2 3 6 FALSE <NA> FALSE ## 3 3 10 FALSE <NA> FALSE ## 4 6 25 FALSE <NA> FALSE ## 5 4 20 FALSE <NA> FALSE ## 6 45 83 FALSE <NA> FALSE ## retweet_status_id in_reply_to_status_status_id ## 1 <NA> <NA> ## 2 <NA> <NA> ## 3 <NA> <NA> ## 4 <NA> <NA> ## 5 <NA> <NA> ## 6 <NA> <NA> ## in_reply_to_status_user_id in_reply_to_status_screen_name lang ## 1 <NA> <NA> en ## 2 <NA> <NA> en ## 3 <NA> <NA> en ## 4 <NA> <NA> en ## 5 <NA> <NA> es ## 6 <NA> <NA> en ## source media_id ## 1 Machine Learning Flashcards 859445461152800768 ## 2 Machine Learning Flashcards 859170424256512000 ## 3 Machine Learning Flashcards 859168410713808896 ## 4 Machine Learning Flashcards 859141327270821888 ## 5 Twitter for Mac 858065067903823872 ## 6 Twitter for Mac 857981212857516032 ## media_url ## 1 http://pbs.twimg.com/media/C-1dF-fVoAAAHR0.jpg ## 2 http://pbs.twimg.com/media/C-xi8uNUwAAKBFx.jpg ## 3 http://pbs.twimg.com/media/C-xhHhLVYAAXUBP.jpg ## 4 http://pbs.twimg.com/media/C-xIfDfVwAA4xmm.jpg ## 5 http://pbs.twimg.com/media/C-h1og6UMAA7oCY.jpg ## 6 http://pbs.twimg.com/media/C-gpXghUwAAXB19.jpg ## media_url_expanded urls ## 1 https://twitter.com/chrisalbon/status/859445463316963328/photo/1 <NA> ## 2 https://twitter.com/chrisalbon/status/859170425921650689/photo/1 <NA> ## 3 https://twitter.com/chrisalbon/status/859168412555132928/photo/1 <NA> ## 4 https://twitter.com/chrisalbon/status/859141329879580672/photo/1 <NA> ## 5 https://twitter.com/chrisalbon/status/858065073167777792/photo/1 <NA> ## 6 https://twitter.com/chrisalbon/status/857981218754764800/photo/1 <NA> ## urls_display urls_expanded mentions_screen_name mentions_user_id symbols ## 1 <NA> <NA> <NA> <NA> NA ## 2 <NA> <NA> <NA> <NA> NA ## 3 <NA> <NA> <NA> <NA> NA ## 4 <NA> <NA> <NA> <NA> NA ## 5 <NA> <NA> <NA> <NA> NA ## 6 <NA> <NA> <NA> <NA> NA ## hashtags coordinates place_id place_type place_name ## 1 machinelearningflashcards NA NA NA NA ## 2 machinelearningflashcards NA NA NA NA ## 3 machinelearningflashcards NA NA NA NA ## 4 machinelearningflashcards NA NA NA NA ## 5 machinelearningflashcards NA NA NA NA ## 6 machinelearningflashcards NA NA NA NA ## place_full_name country_code country bounding_box_coordinates ## 1 NA NA NA NA ## 2 NA NA NA NA ## 3 NA NA NA NA ## 4 NA NA NA NA ## 5 NA NA NA NA ## 6 NA NA NA NA ## bounding_box_type ## 1 NA ## 2 NA ## 3 NA ## 4 NA ## 5 NA ## 6 NA
- Get text within the tweet to add to the file name by removing the hash tag and URL link:
ml_tweets$clean_text <- ml_tweets$text ml_tweets$clean_text <- str_replace(ml_tweets$clean_text,"#[a-zA-Z0-9]{1,}", "") # remove the hashtag ml_tweets$clean_text <- str_replace(ml_tweets$clean_text, " ?(f|ht)(tp)(s?)(://)(.*)[.|/](.*)", "") # remove the url link ml_tweets$clean_text <- str_replace(ml_tweets$clean_text, "[[:punct:]]", "") # remove punctuation
- Download images of the flashcards from the
media_url
column and append the file name from the cleaned tweet text description and save into a folder:
save_image <- function(df){ for (i in c(1:nrow(df))){ image <- try(image_read(df$media_url[i]), silent = F) if(class(image)[1] != "try-error"){ image %>% image_scale("1200x700") %>% image_write(paste0("data/", ml_tweets$clean_text[i],".jpg")) } } cat("Function complete...\n") }
- Apply the function:
save_image(ml_tweets)
At the end of this process you can view all of the #machinelearningflashcards in one place! Thanks to Chris Albon for his work on this, and I’m looking forward to re-running this script to gain additional knowledge from new #machinelearningflashcards that are developed in the future!
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.