Site icon R-bloggers

Giving a Thematic Touch to your Interactive Chart

[This article was first published on Jkunst - R category, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Preliminars

Usually (mainly at work) I made a chart and when I present it nobody cares about the style, if the chart comes from an excel spreadsheet, paint or intercative chart, or colors, labels, , or things I like to care. That’s sad for me but it’s fine: the data/history behind and how you present it is what matters. And surely I’m overreacting.

But hey! That’s not implies you only must do always clean chart or tufte style plots. Sometimes you can play with the topic of your chart and give some thematic touch.

The first example that come to my mind is the Iraq’s bloody toll visualization:

So. We’ll use some resources to try:

Keeping the message intact, ie, don’t abuse adding many element so the user don’t lose the main point of the chart.

The tools

library(tidyverse) 
library(highcharter)
library(lubridate)
library(rvest)
library(janitor)
library(stringr)
library(jsonlite)
library(countrycode)
options(highcharter.debug = TRUE)

Example I: Oil Spills

We can reuse the bloody toll effect, using with Oil Spills data.

The ourworldindata.org website have a descriptive study Max Roser.

Max Roser (2016) – ‘Oil Spills’. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/oil-spills/ [Online Resource]

They start with:

Over the past 4 decades – the time for which we have data – oil spills decreased dramatically. Although oil spills also happen on land, marine oil spills are considered more serious as the spilled oil is less containable

Let’s load the data and make the basic chart.

json <- read_lines("https://ourworldindata.org/wp-content/uploads/nvd3/nvd3_multiBarChart_Oil/multiBarChart_Oil.html")
json <- json[seq(
  which(str_detect(json, "var xxx")),
  first(which(str_detect(json, "\\}\\]\\;")))
)]

json <- fromJSON(str_replace_all(json, "var xxx = |;$", ""))
json <- transpose(json)

str(json)
## List of 2
##  $ :List of 2
##   ..$ values:'data.frame':	43 obs. of  2 variables:
##   .. ..$ x: num [1:43] 0.00 3.16e+10 6.31e+10 9.47e+10 1.26e+11 ...
##   .. ..$ y: int [1:43] 30 14 27 31 27 20 26 16 23 32 ...
##   ..$ key   : chr ">700 Tonnes"
##  $ :List of 2
##   ..$ values:'data.frame':	43 obs. of  2 variables:
##   .. ..$ x: num [1:43] 0.00 3.16e+10 6.31e+10 9.47e+10 1.26e+11 ...
##   .. ..$ y: int [1:43] 7 18 48 28 90 96 67 69 59 60 ...
##   ..$ key   : chr "7-700 Tonnes"
dspills <- map_df(json, function(x) {
  df <- as.data.frame(x[["values"]])
  df$key <- x[["key"]]
  tbl_df(df)
  df
})

glimpse(dspills)
## Observations: 86
## Variables: 3
## $ x   <dbl> 0.00e+00, 3.16e+10, 6.31e+10, 9.47e+10, 1.26e+11, 1.58e+11...
## $ y   <int> 30, 14, 27, 31, 27, 20, 26, 16, 23, 32, 13, 7, 4, 13, 8, 8...
## $ key <chr> ">700 Tonnes", ">700 Tonnes", ">700 Tonnes", ">700 Tonnes"...

The data is ready. So we can make an staked area chart. I used areaspline here to make a liquid effect.

hcspills <- hchart(dspills, "areaspline", hcaes(x, y, group = "key")) %>% 
  hc_plotOptions(series = list(stacking = "normal")) %>% 
  hc_xAxis(type = "datetime") %>% 
  hc_title(text = "Number of Oil Spills Over the Past 4 Decades")
hcspills

open

Yay, the spills are decreasing over time. So we can do:

hcspills2 <- hcspills %>% 
  hc_colors(c("#000000", "#222222")) %>% 
  hc_title(
    align = "left",
    style = list(color = "black")
  ) %>% 
  hc_credits(
    enabled = TRUE,
    text = "Data from ITOPF.com",
    href = "http://www.itopf.com/knowledge-resources/data-statistics/statistics/"
  ) %>% 
  hc_plotOptions(series = list(marker = list(enabled = FALSE))) %>% 
  hc_chart(
    divBackgroundImage = "http://www.drodd.com/images14/ocean-wallpaper30.jpg",
    backgroundColor = hex_to_rgba("white", 0.50)
  ) %>% 
  hc_tooltip(sort = TRUE, table = TRUE) %>% 
  hc_legend(align = "right", verticalAlign = "top",
            layout = "horizontal") %>% 
  hc_xAxis(opposite = TRUE, gridLineWidth = 0,
           title = list(text = "Time", style = list(color = "black")),
           lineColor = "black", tickColor = "black",
           labels = list(style = list(color = "black"))) %>% 
  hc_yAxis(reversed = TRUE, gridLineWidth = 0, lineWidth = 1, lineColor = "black",
           tickWidth = 1, tickLength = 10, tickColor = "black",
           title = list(text = "Oil Spills", style = list(color = "black")),
           labels = list(style = list(color = "black"))) %>% 
  hc_add_theme(hc_theme_elementary())

hcspills2

open

Example II: Winter Olympic Games

Here we will take the data and chart the participating nations over the years.

tables <- read_html("https://en.wikipedia.org/wiki/Winter_Olympic_Games") %>% 
  html_table(fill = TRUE)

dgames <- tables[[5]]
dgames <- clean_names(dgames)
dgames <- dmap_if(dgames, is.character, str_trim)

dgames <- dgames[-1, ]
dgames <- filter(dgames, !games %in% c("1940", "1944"))
dgames <- filter(dgames, !year %in% seq(2018, by = 4, length.out = 4))

Not sure how re-read data to get the right column types. So a dirty trick.

tf <- tempfile(fileext = ".csv")
write_csv(dgames, tf)
dgames <- read_csv(tf)

dgames <- mutate(dgames,
                 nations = str_extract(nations, "\\d+"),
                 nations = as.numeric(nations))

glimpse(dgames)
## Observations: 22
## Variables: 14
## $ games         <chr> "I", "II", "III", "IV", "V", "VI", "VII", "VIII"...
## $ year          <int> 1924, 1928, 1932, 1936, 1948, 1952, 1956, 1960, ...
## $ host          <chr> "Chamonix, France", "St. Moritz, Switzerland", "...
## $ opened_by     <chr> "Undersecretary Gaston Vidal", "President Edmund...
## $ dates         <chr> "25 January – 5 February", "11–19 February", "4–...
## $ nations       <dbl> 16, 25, 17, 28, 28, 30, 32, 30, 36, 37, 35, 37, ...
## $ competitors   <int> 258, 464, 252, 646, 669, 694, 821, 665, 1091, 11...
## $ competitors_2 <int> 247, 438, 231, 566, 592, 585, 687, 521, 892, 947...
## $ competitors_3 <int> 11, 26, 21, 80, 77, 109, 134, 144, 199, 211, 205...
## $ sports        <int> 6, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, ...
## $ disci_plines  <int> 9, 8, 7, 8, 9, 8, 8, 8, 10, 10, 10, 10, 10, 10, ...
## $ events        <int> 16, 14, 14, 17, 22, 22, 24, 27, 34, 35, 35, 37, ...
## $ top_nation    <chr> "Norway (NOR)", "Norway (NOR)", "United States (...
## $ ref           <chr> "[2]", "[3]", "[4]", "[5]", "[6]", "[7]", "[8]",...

Let’s see the first chart:

hcgames <- hchart(dgames, "areaspline", hcaes(year, nations, name = host), name = "Nations") %>% 
  hc_title(text = "Number of Participating Nations in every Winter Olympic Games") %>%
  hc_xAxis(title = list(text = "Time")) %>% 
  hc_yAxis(title = list(text = "Nations"))
  
hcgames

open

With that increase of nations in 1980 we can:

urlico <- "url(https://raw.githubusercontent.com/tugmaks/flags/2d15d1870266cf5baefb912378ecfba418826a79/flags/flags-iso/flat/24/%s.png)"

dgames <- dgames %>% 
  mutate(country = str_extract(host, ", .*$"),
         country = str_replace(country, ", ", ""),
         country = str_trim(country)) %>% 
  mutate(countrycode = countrycode(country, origin = "country.name", destination = "iso2c")) %>% 
  mutate(marker = sprintf(urlico, countrycode),
         marker = map(marker, function(x) list(symbol = x)),
         flagicon = sprintf(urlico, countrycode),
         flagicon = str_replace_all(flagicon, "url\\(|\\)", "")) %>% 
  rename(men = competitors_2, women = competitors_3)

glimpse(dgames)
## Observations: 22
## Variables: 18
## $ games        <chr> "I", "II", "III", "IV", "V", "VI", "VII", "VIII",...
## $ year         <int> 1924, 1928, 1932, 1936, 1948, 1952, 1956, 1960, 1...
## $ host         <chr> "Chamonix, France", "St. Moritz, Switzerland", "L...
## $ opened_by    <chr> "Undersecretary Gaston Vidal", "President Edmund ...
## $ dates        <chr> "25 January – 5 February", "11–19 February", "4–1...
## $ nations      <dbl> 16, 25, 17, 28, 28, 30, 32, 30, 36, 37, 35, 37, 3...
## $ competitors  <int> 258, 464, 252, 646, 669, 694, 821, 665, 1091, 115...
## $ men          <int> 247, 438, 231, 566, 592, 585, 687, 521, 892, 947,...
## $ women        <int> 11, 26, 21, 80, 77, 109, 134, 144, 199, 211, 205,...
## $ sports       <int> 6, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6...
## $ disci_plines <int> 9, 8, 7, 8, 9, 8, 8, 8, 10, 10, 10, 10, 10, 10, 1...
## $ events       <int> 16, 14, 14, 17, 22, 22, 24, 27, 34, 35, 35, 37, 3...
## $ top_nation   <chr> "Norway (NOR)", "Norway (NOR)", "United States (U...
## $ ref          <chr> "[2]", "[3]", "[4]", "[5]", "[6]", "[7]", "[8]", ...
## $ country      <chr> "France", "Switzerland", "United States", "German...
## $ countrycode  <chr> "FR", "CH", "US", "DE", "CH", "NO", "IT", "US", "...
## $ marker       <list> ["url(https://raw.githubusercontent.com/tugmaks/...
## $ flagicon     <chr> "https://raw.githubusercontent.com/tugmaks/flags/...
urlimg <- "http://jkunst.com/images/add-style/winter_olimpics.jpg"
ttvars <- c("year", "nations", "sports", "competitors", "women", "men", "events")
tt <- tooltip_table(
  ttvars,
  sprintf("{point.%s}", ttvars), img = tags$img(src="{point.flagicon}", style = "text-align: center;")
)

hcgames2 <- hchart(dgames, "areaspline", hcaes(year, nations, name = host), name = "Nations") %>% 
  hc_colors(hex_to_rgba("white", 0.8)) %>% 
  hc_title(
    text = "Number of Participating Nations in every Winter Olympic Games",
    align = "left",
    style = list(color = "white")
  ) %>% 
  hc_credits(
    enabled = TRUE,
    text = "Data from Wipiedia",
    href = "https://en.wikipedia.org/wiki/Winter_Olympic_Games"
  ) %>% 
  hc_xAxis(
    title = list(text = "Time", style = list(color = "white")),
    gridLineWidth = 0,
    labels = list(style = list(color = "white"))
  ) %>% 
  hc_yAxis(
    lineWidth = 1,
    tickWidth = 1,
    tickLength = 10,
    title = list(text = "Nations", style = list(color = "white")),
    gridLineWidth = 0,
    labels = list(style = list(color = "white"))
  ) %>% 
  hc_chart(
    divBackgroundImage = urlimg,
    backgroundColor = hex_to_rgba("black", 0.10)
    ) %>% 
  hc_tooltip(
    headerFormat = as.character(tags$h4("{point.key}", tags$br())),
    pointFormat = tt,
    useHTML = TRUE,
    backgroundColor = "transparent",
    borderColor = "transparent",
    shadow = FALSE,
    style = list(color = "white", Size = "0.8em", Weight = "normal"),
    positioner = JS("function () { return { x: this.chart.plotLeft + 15, y: this.chart.plotTop + 0 }; }"),
    shape = "square"
  ) %>% 
  hc_plotOptions(
    series = list(
      states = list(hover = list(halo = list(size  = 30)))
    )
  ) %>% 
  hc_add_theme(hc_theme_elementary())

hcgames2

open

My Favorite Bonus

library(rwars)

swmovies <- get_all_films()

swdata <- map_df(swmovies$results, function(x){
  data_frame(
    movie = x$title,
    species = length(x$species),
    planets = length(x$planets),
    characters = length(x$characters),
    vehicles = length(x$vehicles),
    release = x$release_date
  )
}) 

swdata <- gather(swdata, key, number, -movie, -release) %>% 
  arrange(release)

hchart(swdata, "line", hcaes(x = movie, y = number, group = key),
       color = c("#e5b13a", "#4bd5ee", "#4AA942", "#FAFAFA")) %>% 
  hc_title(
    text = "Diversity in <span style=\"color:#e5b13a\"> STAR WARS</span> movies",
    useHTML = TRUE
  ) %>% 
  hc_yAxis(gridLineColor = "#666666") %>% 
  hc_tooltip(table = TRUE, sort = TRUE) %>% 
  hc_credits(
    enabled = TRUE,
    text = "Source: SWAPI via rwars package",
    href = "https://swapi.co/"
  ) %>%
  hc_chart(
    backgroundColor = hex_to_rgba("black", "0.2"),
    divBackgroundImage = "http://www.wired.com/images_blogs/underwire/2013/02/xwing-bg.gif"
  ) %>% 
  hc_add_theme(hc_theme_flatdark())

open

What do you think? I had fun, so for me this worth every background I used.

source

To leave a comment for the author, please follow the link and comment on their blog: Jkunst - R category.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.